Forecasting

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification.

Modeling Projects

Modeling provides a glimpse into the future by combining predicted changes to ocean chemistry with impacts to both marine organisms and people.  These models allow communities and fishery managers to plan ahead and adapt to ocean acidification. Models are underway or have been completed for some of the most vulnerable species, such as Atlantic sea scallops, which are vulnerable to acidification impacts in their early life stages and represent the highest grossing single species fishery in the United States. The Ocean Acidification Program (OAP) funded a modeling project led by Woods Hole Oceanographic Institution to develop an integrated model for forecasting the impacts of ocean acidification (OA) on the Atlantic sea scallop fishery.  The new model connects chemical changes with population changes and economic information that will be used to create interactive tools for decision makers. NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region.  These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.

Vulnerability Assessments 

Learning how sensitive marine organisms are to ocean acidification is an important part of creating management plans. These “vulnerability assessments” lay the groundwork for adaptation strategies by identifying the most ecologically, economically or culturally  important resources. Scientists at NOAA Fisheries, which are supported  by the Ocean Acidification Program (OAP), are developing vulnerability assessments in US regions that include ocean acidification as part of fishery management plans. These ocean acidification vulnerability assessments have been completed in the Northeast for a wide variety of fishes and invertebrates, such as cod and sea scallops, and are near completion in Alaska.  Additionally, a vulnerability assessment was completed for shellfish aquaculture throughout the United States.  

From Observations to Forecasts

Learning ways in which communities can adapt to ocean acidification is an important strategy for protecting human health and marine ecosystems.  Turning current observations into forecasts is the key mechanism by which these adaptation plans are created. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective.  Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country.  These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.


 

STORIES OF ADAPTATION

Research shows ocean acidification is spreading rapidly in the Arctic

Research shows ocean acidification is spreading rapidly in the Arctic

NOAA Oceanic and Atmospheric Research

Ocean acidification is spreading rapidly in the western Arctic Ocean in both area and depth, potentially affecting shellfish, other marine species in the food web, and communities that depend on these resources, according to new research published in Nature Climate Change by NOAA, Chinese marine scientists and other partners.

Tuesday, March 14, 2017
Ocean Acidification: Building a Path Toward Adaptation in the Arctic

Ocean Acidification: Building a Path Toward Adaptation in the Arctic

NOAA Ocean Acidification Program

Scientists, economists, and stakeholders from all eight Arctic countries forge a path forward in adapting to ocean acidification in the Arctic

Arctic waters are rapidly changing. In the coming decades, these high-latitude waters will undergo significant shifts that could affect fish, shellfish, marine mammals, along with the livelihoods and well-being of communities dependent on these resources.

Wednesday, February 8, 2017
The Point of No Return: Climate Change Nightmares Are Already Here

The Point of No Return: Climate Change Nightmares Are Already Here

Rolling Stone

The impacts of ocean acidification on marine species may be occurring earlier than expected. Scientists from the NOAA Northwest Fisheries Science Center (NWFSC), Bill Peterson​, and NOAA Pacific Marine Environmental Laboratory (PMEL), Dr. Simone Alin and Dr. Nina Bednarsek,​ are featured in an article by The Rolling Stone discussing the imminent threat of ocean acidification on marine species in the most vulnerable regions around the globe, such as the Pacific Northwest.

Wednesday, August 5, 2015
Tags:
Arctic Ocean Acidification

Arctic Ocean Acidification

Arctic Monitoring and Assessment Programme

The report by the Arctic Monitoring and Assessment Program on Arctic Ocean Acidification was recently released and identifies the risks to Arctic ecosystems, including indigenous tribes and Arctic residents.

Sunday, December 1, 2013
Tags:
First evidence of ocean acidification affecting live marine creatures in the Southern Ocean

First evidence of ocean acidification affecting live marine creatures in the Southern Ocean

British Antarctic Survey

The shells of marine snails – known as pteropods – living in the seas around Antarctica are being dissolved by ocean acidification according to a new study published this week in the journal Nature Geoscience.  These tiny animals are a valuable food source for fish and birds and play an important role in the oceanic carbon cycle*.

During a science cruise in 2008, researchers from British Antarctic Survey (BAS) and the University of East Anglia (UEA), in collaboration with colleagues from the US Woods Hole Oceanographic Institution and the National Oceanic and Atmospheric Administration (NOAA), discovered severe dissolution of the shells of living pteropods in Southern Ocean waters.

Sunday, November 25, 2012
Tags:
RSS
12