Forecasting

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification.

Modeling Projects

Modeling provides a glimpse into the future by combining predicted changes to ocean chemistry with impacts to both marine organisms and people.  These models allow communities and fishery managers to plan ahead and adapt to ocean acidification. Models are underway or have been completed for some of the most vulnerable species, such as Atlantic sea scallops, which are vulnerable to acidification impacts in their early life stages and represent the highest grossing single species fishery in the United States. The Ocean Acidification Program (OAP) funded a modeling project led by Woods Hole Oceanographic Institution to develop an integrated model for forecasting the impacts of ocean acidification (OA) on the Atlantic sea scallop fishery.  The new model connects chemical changes with population changes and economic information that will be used to create interactive tools for decision makers. NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region.  These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.

Vulnerability Assessments 

Learning how sensitive marine organisms are to ocean acidification is an important part of creating management plans. These “vulnerability assessments” lay the groundwork for adaptation strategies by identifying the most ecologically, economically or culturally  important resources. Scientists at NOAA Fisheries, which are supported  by the Ocean Acidification Program (OAP), are developing vulnerability assessments in US regions that include ocean acidification as part of fishery management plans. These ocean acidification vulnerability assessments have been completed in the Northeast for a wide variety of fishes and invertebrates, such as cod and sea scallops, and are near completion in Alaska.  Additionally, a vulnerability assessment was completed for shellfish aquaculture throughout the United States.  

From Observations to Forecasts

Learning ways in which communities can adapt to ocean acidification is an important strategy for protecting human health and marine ecosystems.  Turning current observations into forecasts is the key mechanism by which these adaptation plans are created. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective.  Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country.  These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.


 

STORIES OF ADAPTATION

Ocean Acidification: Building a Path Toward Adaptation in the Arctic

Ocean Acidification: Building a Path Toward Adaptation in the Arctic

NOAA Ocean Acidification Program

Scientists, economists, and stakeholders from all eight Arctic countries forge a path forward in adapting to ocean acidification in the Arctic

Arctic waters are rapidly changing. In the coming decades, these high-latitude waters will undergo significant shifts that could affect fish, shellfish, marine mammals, along with the livelihoods and well-being of communities dependent on these resources.

Wednesday, February 8, 2017

New tool helps oyster growers prepare for changing ocean chemistry

NOAA Research

For Bill Mook, coastal acidification is one thing his oyster hatchery cannot afford to ignore.

Mook Sea Farm depends on seawater from the Gulf of Maine pumped into a Quonset hut-style building where tiny oysters are grown in tanks. Mook sells these tiny oysters to other oyster farmers or transfers them to his oyster farm on the Damariscotta River where they grow large enough to sell to restaurants and markets on the East Coast.

Tuesday, September 6, 2016

SCIENTISTS GATHER FROM AROUND THE WORLD TO DEVELOP A GLOBAL OCEAN ACIDIFICATION OBSERVING NETWORK

NOAA Ocean Acidification Program

NOAA, academic and international scientific experts are gathering July 24 -26, to further develop the Global Ocean Acidification Network (GOA-ON). The purpose of this network is to facilitate international coordination in order to compare and integrate observational data collection specific to ocean acidification across the globe. This group is designing a global standard for measuring and identifying ocean acidification and is important for establishing a global understanding of ocean acidification including its impacts on ocean life as well as humans. This network will ensure data quality and comparability, facilitated by a structured system based on common standards. It will also assist policy-making through research products and model-based projections of future potential impacts of ocean acidification. 

Wednesday, July 24, 2013
Tags:
RSS