OAP Projects in the gulf of mexico


Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System

James McWilliams, UCLA/IGPP

The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition.  The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales.  Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.

The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.

Wednesday, January 25, 2017
Categories: Projects

Assessing the capacity for evolutionary adaptation to ocean acidification in geoduck

Rick Goetz, NOAA Northwest Fisheries Science Center

We will examine the effects of OA conditions (elevated pCO2) on the adaptive response of a potentially vulnerable native marine mollusc species with ecological, economic and social importance in the Pacific Northwest: geoduck clams (Panopea generosa).  Geoduck clam larvae will be exposed to normal and elevated pCO2 and surviving larvae will be assessed using genomic sequencing to determine changes in allele frequencies at single nucleotide polymorphisms throughout the genome, and changes in the frequency of methylation states (epialleles) throughout the epigenome.  Existing ecosystem models of OA consider a species' response to increased pCO2 as a fixed attribute; however, interpretations of the effects of OA at the population level may shift substantially if species adapt to the new environment. Furthermore, we will gain a better understanding of how specific genetic and epigenetic variations influence phenotype and the ability of an organism to respond, giving us new insights into fundamental aspects of species adaptation to environmental change.

Wednesday, November 16, 2016
Categories: Projects
RSS
12