OAP Projects in the NORTHEAST U.S.


Testing critical population level hypothesis regarding OA effects on early life history stages of marine fish for the N.E. U.S.

Chris Chambers, NOAA Northeast Fisheries Science Center

The primary goal of our OA projects (NEFSC Howard Laboratory) is to understand the impacts of increased CO2 and acidity of ocean and estuarine waters on important finfish species of our region. Our tactical objectives during FY12-14 were to develop, test, and then implement an experimental system that allows for the estimation of impacts of high CO2 and associated increased acidity of marine waters on the ELS of economically and ecologically important finfish species important to the NE USA. In FY15-17 we are building upon investments in research capacity and knowledge, and our experiments are addressing higher order questions that fold very well into one of the goals of the Interagency Working Group on OA – undertaking research to examine species-specific and multi-species physiological responses including behavioral and evolutionary adaptive capacities. We have four higher level objectives for our FY15-17 studies. 

First, we are testing our hypothesis that the resilience of the individuals in a population is inversely related to the variability of the CO2 in the habitat the population occupies (see also, Murray et al. 2014). This evaluation is being done by conducting comparative experiments among winter flounder from separate and distinct source populations whose resident habitats differ in characteristic levels and stability in CO2. Second, we are evaluating the role of parental exposure in the resilience / susceptibility of offspring to elevated CO2 (Sunday et al. 2014, Malvezzi et al. 2015). For these transgenerational studies, we are using three different forage species (original intent was to use Atlantic cod broodstock housed at the University of Maine but logistics and staffing decisions there precluded our use of those fish). Third, we are expanding our synthesis and meta-analysis of biological effects of CO2 on finfish. Lastly, we continue our education and outreach efforts on OA themes by mentoring students, conducting surveys, and providing tours of our OA experimental facilities.

Wednesday, November 16, 2016
Categories: Projects

East Coast OA (ECOA) Cruise

Joe Salisbury (University of New Hampshire) & Wei-Jun Cai (University of Delaware)

NOAA academic partners Salisbury and Cai will organize and lead a 34-days cruise covering 12 transects of the U.S. and Canadian coast oceans from Nova Scotia in the north to the Gulf of Maine, Long Island Sound, Mid-Atlantic and Southern Bight regions, ending with a transect off of mid Florida. This cruise will serve as a synoptic characterization of the marine carbonate parameters of the coastal ocean with increased coverage in nearshore areas that have not surveyed in the previous cruises and subsurface dynamics that are not captured from using buoyed assets or ships of opportunity. The climate quality data from these cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and serves as a start of a long-term record of dynamics and processes controlling Ocean Acidification (OA) on the coastal shelves. To this end there is an increasing focus on these cruises to perform rate measurements (e.g. NPP/NEP/NEC) for validation measurements of autonomous assets and buoyed assets, for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area. 

Wednesday, November 16, 2016
Categories: Projects

OA products for the Gulf of Mexico and East Coast

Ruben van Hooidonk and Rik Wanninkhof, AOML

Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics.

The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.

Wednesday, November 16, 2016
Categories: Projects
RSS
123