Biological Response

NOAA's Ocean Acidification Program supports research that focuses on economically and ecologically important marine species. Research of survival, growth, and physiology of marine organisms can be used to explore how aquaculture, wild fisheries, and food webs may change as ocean chemistry changes.


A number of NOAA National Marine Fisheries Service Science Centers have state-of-the-art experimental facilities to study the response of marine organisms to the chemistry conditions expected with ocean acidification.

The Northeast Fisheries Science Center has facilities at its Sandy Hook, NJ and Milford, CT laboratories; the Alaska Fisheries Science Centers at its Newport, OR and Kodiak, AK laboratories; and the Northwest Fisheries Science Center at its Mukilteo and Manchester, WA laboratories. All facilities can tightly control carbon dioxide and temperature. The Northwest Fisheries Science Center can also control oxygen, and can create variable treatment conditions for carbon dioxide, temperature, and oxygen. These facilities include equipment for seawater carbon chemistry analysis, and all use standard operating procedures for analyzing carbonate chemistry to identify the treatment conditions used in experiments.



Both deep sea and shallow reef-building corals have calcium carbonate skeletons.  As our oceans become more acidic, carbonate ions, which are an important part of calcium carbonate structures, such as these coral skeletons, become relatively less abundant. Decreases in seawater carbonate ion concentration can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms such as coral.



Increased levels of carbon dioxide in our ocean can have a wide variety of impacts on fish, including altering behavior, otolith (a fish's ear bone) formation, and young fish's growth. Find out more about what scientists are learning about ocean acidification impacts on fish like rockfish, scup, summer flounder, and walleye pollock.


Shellfish, such as oyster, clams, crabs and scallop, provide food for marine life and for people, too. Shellfish make their shells or carapaces from calcium carbonate, which contains carbonate ion as a building block. The decreases in seawater carbonate ion concentration expected with ocean acidification can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms like shellfish. This may impact their survival, growth, and physiology, and, thus, the food webs and economies that depend on them.


Plankton are tiny plants and animals that many marine organisms, ranging from salmon to whales, rely on for nutrition. Some plankton have calcium carbonate structures, which are built from carbonate ions. Carbonate ions become relatively less abundant as the oceans become more acidic. Decreases in seawater carbonate ions can make building and maintaining shells and other calcium carbonate structures difficult for calcifying marine organisms such as plankton. Changes to the survival, growth, and physiology of plankton can have impacts throughout the food web.


Building Robust Reef Carbonate Projections from Synthesized NCRMP Ocean Acidification Datasets

Tom Oliver and Derek Manzello, NOAA Coral Reef Conservation Program

This project will serve to (1) synthesize National Coral Reef Monitoring Program (NCRMP) OA Enterprise observations; (2) compare reef OA observations to oceanic end members to infer reefscale biogeochemical processes, and finally (3) use these synthesis products to better link projection models of oceanic carbonate systems to reef-scale OA impacts. The NCRMP OA enterprise supports: our collection of seawater samples from reef and surface observations; a set of MapCO2 buoys in the Caribbean and Hawaii; diurnal monitoring instruments (e.g. CREP's diurnal suite, AOML's/McGillis' BEAMS); and metrics of ecosystem response to OA (e.g. CAUs, coral coring, etc.). The datasets generated by these activities will be the focus of this wide-ranging synthesis.

Wednesday, November 16, 2016
Categories: Projects

Effects of elevated pCO2 and temperature on reef biodiversity and ecosystem functioning using Autonomous Reef Monitoring Structures and hyperspectral technology

Molly Timmers, NOAA Coral Reef Conservation Program

The goal of this project is to improve our understanding of the effects of ocean acidification and warming on coral reef communities by examining responses of entire suites of reef organisms recruiting to Autonomous Reef Monitoring Structures (ARMS) in benthic mesocosms. We will perform a fully factorial experiment that consists of four treatments of low and high temperature and pCO₂ levels. ARMS are the leading long-term monitoring tool to measure biodiversity on reef systems and are integrated into the National Coral Reef Monitoring Program (NCRMP) Class II and Class III climate stations dedicated to monitor and access the physical, chemical and biological impacts associated with climate change over time. We propose to examine the effects of elevated temperature and pCO₂ on recruitment, biomass, biodiversity, and community structure over a multiannual time frame to increase our understanding of how biodiversity, ecosystem function, and their relationship will be impacted under future climate scenarios. 

Wednesday, November 16, 2016
Categories: Projects