FISH
SHELLFISH
PLANKTON

 

Biological Response

NOAA's Ocean Acidification Program supports research that focuses on economically and ecologically important marine species. Research of survival, growth, and physiology of marine organisms can be used to explore how aquaculture, wild fisheries, and food webs may change as ocean chemistry changes.


FISHERIES SCIENCE CENTERS

A number of NOAA National Marine Fisheries Service Science Centers have state-of-the-art experimental facilities to study the response of marine organisms to the chemistry conditions expected with ocean acidification.

The Northeast Fisheries Science Center has facilities at its Sandy Hook, NJ and Milford, CT laboratories; the Alaska Fisheries Science Centers at its Newport, OR and Kodiak, AK laboratories; and the Northwest Fisheries Science Center at its Mukilteo and Manchester, WA laboratories. All facilities can tightly control carbon dioxide and temperature. The Northwest Fisheries Science Center can also control oxygen, and can create variable treatment conditions for carbon dioxide, temperature, and oxygen. These facilities include equipment for seawater carbon chemistry analysis, and all use standard operating procedures for analyzing carbonate chemistry to identify the treatment conditions used in experiments.

 


Corals

Both deep sea and shallow reef-building corals have calcium carbonate skeletons.  As our oceans become more acidic, carbonate ions, which are an important part of calcium carbonate structures, such as these coral skeletons, become relatively less abundant. Decreases in seawater carbonate ion concentration can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms such as coral.

 


Fish

Increased levels of carbon dioxide in our ocean can have a wide variety of impacts on fish, including altering behavior, otolith (a fish's ear bone) formation, and young fish's growth. Find out more about what scientists are learning about ocean acidification impacts on fish like rockfish, scup, summer flounder, and walleye pollock.


Shellfish

Shellfish, such as oyster, clams, crabs and scallop, provide food for marine life and for people, too. Shellfish make their shells or carapaces from calcium carbonate, which contains carbonate ion as a building block. The decreases in seawater carbonate ion concentration expected with ocean acidification can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms like shellfish. This may impact their survival, growth, and physiology, and, thus, the food webs and economies that depend on them.


Plankton

Plankton are tiny plants and animals that many marine organisms, ranging from salmon to whales, rely on for nutrition. Some plankton have calcium carbonate structures, which are built from carbonate ions. Carbonate ions become relatively less abundant as the oceans become more acidic. Decreases in seawater carbonate ions can make building and maintaining shells and other calcium carbonate structures difficult for calcifying marine organisms such as plankton. Changes to the survival, growth, and physiology of plankton can have impacts throughout the food web.


OAP SUPPORTED BIOLOGICAL RESPONSE PROJECTS

Time series of OA and carbon system properties in the northern Gulf

Stephan Howden, The University of Southern Mississippi

This project will provide time-series observations of coastal ocean pH and carbon system properties, along with other variables that affect carbon transformations, in the northern Gulf of Mexico in support of goals elucidated in the NOAA Ocean and Great Lakes Acidification Research Implementation Plan. This project most directly addresses Theme 1: Develop the monitoring capacity to quantify and track ocean acidification in open-ocean, coastal, and Great Lake systems, but also addresses the educational objectives of Theme 6. USM will maintain a 3- m discus buoy in the northern Gulf of Mexico with a PMEL MAPCO2 system that includes a CTD, dissolved oxygen, and pH sensors. Meteorological sensors on the buoy will be utilized for computing air-sea fluxes of CO2. Water samples and continuous vertical profiles will be taken at the buoy site during quarterly cruises. Water samples will be analyzed for DIC, TA, pH, dO, S, NUTS and chlorophyll a. Analyzed water samples and profile data will be submitted to NODC through standard NOAA OAP submission spreadsheets containing both data and associated metadata.

While this work is focused on the Gulf of Mexico additional time-series sites in the South Atlantic Bight and Gulf of Maine can provide a comparison over a wide range of coastal and latitudinal regimes. The northern Gulf of Mexico, Florida and South Atlantic Bight regions are all commonly influenced by one contiguous western boundary current system, which originates with the Loop Current in the Gulf of Mexico and then becomes the Gulf Stream along the southeastern U.S. continental shelf. The Gulf of Mexico observations will be compared with the other western boundary current influenced site in the South Atlantic Bight maintained by the University of Georgia (UGA) and the high latitude site in the Gulf of Maine maintained by the University of New Hampshire (UNH). 

Wednesday, November 16, 2016
Categories: Projects

High-resolution ocean-biogeochemistry modeling for the East and Gulf coasts of the U.S.

Sang-ki Lee, AOML

Analysis of the data collected during the first (2007) and the second (2012) Gulf of Mexico and East Coast Carbon (GOMECC) cruises showed measurable temporal pH and aragonite saturation state (ΩAr) changes along the eight major transects. However, it is challenging to determine how much of this temporal change between the two cruises is due to ocean acidification and how much is due to variability on seasonal to interannual scales. Indeed, the expected 2% average decrease in ΩAr due to increasing atmospheric CO2 levels over the 5-year period was largely overshadowed by local and regional variability from changes in ocean circulation, remineralization/respiration and riverine inputs (Wanninkhof et al., 2015). Therefore, in order to provide useful products for the ocean acidification (OA) research community and resource managers, it is important to filter out seasonal cycles and other variability from the multi-annual trend. Here, we propose to use a high-resolution regional ocean-biogeochemistry model simulation for the period of 1979 - present day (real-time run) to fill the temporal gap between the 1st and 2nd GOMECC cruise data. In addition we will fine-tune and validate the model by using extensive surface water pCO2 observations from the ships of opportunity in the coastal region (SOOP-OA), and using the carbon observations from the East Coast Ocean Acidification Cruises (ECOA-1) and OAP mooring stations and from remotely sensed data. Then, we will use the real-time model run to estimate the 5-year trends (2012 – 2007) of OA and the carbon and biogeochemical variables along the East and Gulf coasts of the U.S. We will also examine the future OA variability in the East and Gulf coasts of the U.S. by downscaling the future climate projections under different emission scenarios developed for the IPCC-AR5. Based on the results obtained from the proposed model simulations, we will contribute to an observational strategy suitable for elucidating multi-annual trend of carbon and biogeochemical variables along the East and Gulf coasts of the U.S.

Wednesday, November 16, 2016
Categories: Projects

Ship of Opportunity work in support of OA monitoring (SOOP-OA)

Leticia Barbero & Rik Wanninkhof, AOML

NOAA operates the largest ship of opportunity (SOOP) effort for surface CO2 observations in the world. The objective of the ocean acidification (OA) monitoring effort in the coastal ocean on NOAA fisheries ships Gordon Gunter and Henry B. Bigelow is to obtain data for a data-based ocean acidification product suite for the East Coast and Gulf Coast. The ship of opportunity (SOOP) in support of OA monitoring (SOOP-OA) is in direct response to the needs expressed in the NOAA OA strategic plan, national and international program documentation, to understand how the rates and magnitude of acidification will vary across time and space, as a consequence of local and regional geochemical, hydrological, and biological variability and trends. The core of understanding rests upon monitoring the carbon system and related physical and biogeochemical parameters that are used to characterize the state of the coastal ocean in the project area. 

The NOAA fisheries ships Gunter and Bigelow provide regular cruise tracks used in stock assessments such that over time correlations and causality can be obtained between OA and fisheries interests. The repeatability also provides good snapshots of change. As there are robust correlations between surface CO2 levels and remotely sensed parameters, these data are critical for the mapping of OA parameters. The development of algorithms to perform this mapping is done from support measurements on the SOOP-OA, other SOOP data under our purview, and from the dedicated research cruises.

Wednesday, November 16, 2016
Categories: Projects

GOMECC-3

Leticia Barbero, AOML

Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics. 

The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area. The GOMECC research cruises have now been divided into two cruises, one focused on the east coast, the “East Coast Ocean Acidification” (ECOA) cruise and the other covering the Gulf of Mexico, the “Gulf of Mexico Ecosystems and Carbon Cycle” (GOMECC) cruise.

 

Wednesday, November 16, 2016
Categories: Projects

OA products for the Gulf of Mexico and East Coast

Ruben van Hooidonk and Rik Wanninkhof, AOML

Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics.

The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.

Wednesday, November 16, 2016
Categories: Projects
RSS
123456