DEVELOPING FORECASTS
HOW CAN WE ADAPT?

 

Societal impacts and adaptation strategies

Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.


ECONOMIC MODELING

The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.

Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.


Figure from: Harvey et al. 2010

Ecosystem Modeling

Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.

How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.


Economic Projections

Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.

For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.

 

How can we adapt to our changing ocean? 

The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.

 

 

FORECASTING

TECHNOLOGY

MANAGEMENT


FROM OBSERVATIONS TO FORECASTS

Turning current observations into forecasts is the key mechanism by which adaptation plans are created.

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.

 

NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.


TECHNOLOGY

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


MANAGEMENT TOOLS

Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.

Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats.  Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations.  In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters.   Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.

 


EXPLORE THE IOOS Pacific Region Ocean Acidification
Data portal

This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.


OAP SUPPORTED Societal impact PROJECTS

OA Coastal Underway Observations

Simone Alin, NOAA Pacific Marine Environmental Laboratory

PMEL's surface observational network, consisting of the complementary moorings and underway observations, is designed to quantify the temporal and spatial scales of variability of carbon species, pH, and aragonite saturation in surface waters.  To assess spatial dynamics in OA and evaluate the synergistic effects of coastal processes along the coasts and in the open ocean, we will leverage our Ship of Opportunity Program (SOOP) infrastructure along the U.S. west coast.  Underway observations have been enhanced by the collection and analysis of discrete DIC and TA samples beginning in FY 2010. 

The primary objectives of our underway OA FY 2015–2017 sustained investment work plan are to maintain existing underway observations on NOAA Ships Oscar Dyson and Bell Shimada with autonomous pCO2, pH, and ancillary sensors that cover the continental shelf regions of Alaska, Washington, Oregon, and California. We plan to work with Dr. Rik Wanninkhof''s group at AOML to ensure that the underway OA system on NOAA Ship Ronald Brown is working well for the FY2016 West Coast Ocean Acidification cruise.  In addition to making ongoing observations from existing OAP-funded CO2/pH SOOP platforms, during this funding period we are placing a major emphasis on finalizing QC on backlogged underway pH and DO data, distributing the final data to CDIAC and NODC data archives, and data synthesis and publication efforts.  These efforts are being undertaken in conjunction with other members of the PMEL Carbon Group, the PMEL Science Data Integration Group, our AOML sister group, and Dr. Todd Martz at Scripps Institution of Oceanography.  Finally, under the OAP SI FY15-17 work plan, we will continue to maintain the pH and O2 sensors that are presently on the container ship Cap Blanche and contribute to the trans-Pacific decadal time-series.

Wednesday, November 16, 2016
Categories: Projects

Sustained OA Mooring Observations

Adrienne Sutton, NOAA Pacific Marine Environmental Laboratory

Since ocean acidification (OA) emerged as an important scientific issue, the PMEL Carbon Group has been augmenting and expanding our observational capacity by adding pH and other biogeochemical measurements to a variety of observing platforms.  In particular, high-frequency observations on moorings provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily, seasonal, and interannual cycles. The current NOAA OA mooring network consists of 21 moorings in coral, coastal, and open ocean environments (Figure 1).  At present, the OA mooring network includes surface measurements of CO2 (seawater and atmospheric marine boundary layer), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites.  The main objective of this network is to quantify temporal variability in the ocean carbon system.  This includes describing how annual, seasonal, and event-scale variability impacts air-sea CO2 flux and ocean acidification; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.  Sustained investments in the OA mooring network maintain long-term time series of OA variability and change, allow the PMEL Carbon Group and partners to provide analyses and comparisons of patterns and trends across the network, and make these mooring data available to the public and the broader scientific community.

The main hypothesis that motivates this mooring network is that the range of natural variability as well as the rates and magnitude of acidification will vary across time, space, and depth as a consequence of local and regional geochemical, hydrological, and biological mechanisms. Similar to the iconic Mauna Loa atmospheric CO2 time series, the “ocean observatories” in the NOAA OA/CO2 mooring network gain importance with time as they, in this case, begin to distinguish ocean carbon uptake and ocean acidification from the large natural temporal variability in the marine environment. The main objective of the NOAA OA/CO2 mooring network is to quantify temporal variability in the ocean carbon system.  This includes describing how annual, seasonal, and event-scale variability impacts CO2 flux and OA; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.

Wednesday, November 16, 2016
Categories: Projects

OA Monitoring in the US Pacific Coastal Waters

Burke Hales, Oregon State University

The goal of this component of the project is to continue the mooring and ship-based monitoring of the Ocean Acidification-impacted carbonate chemistry of US Pacific coastal waters. This objective will be accomplished by: 1) continued operation of the Oregon Ocean Acidification Mooring Program, including deployment and maintenance of the surface moorings at the established Ocean Acidification (OA) node at NH10 with surface MAPCO2 systems, nearbottom moorings with SAMI-CO2 and SAMI-pH systems at the NH10 site and the shelfbreak in the early stages of the project, followed by a relocation (following validation exercises, see #3) of these assets to a more biologically productive site to the south; 2) measurement support of the West Coast Ocean Acidification Cruise in 2016; and 3) a validation program for moored measurements off the Oregon Coast. The final component will include a parallel deployment of the NOAA-OAP moored assets at NH-10 for 6-12 months following establishment of the OOI node there to ensure consistency between the OAP and OOI platforms, as well as continued opportunistic sample collection for archiving and analyses in Hales; lab at OSU.

Tuesday, November 8, 2016
Categories: Projects

Sustaining OA Measurements on the Washington Coast NANOOS NEMO Moorings

Jan Newton, NANOOS

Working with the Carbon Group at NOAA’s Pacific Marine Environmental Lab, we propose to continue the now 4-year time series of real-time, high-frequency measurements of critical core OA parameters on the northern Washington shelf, including regular collection of validation samples. Specifically APL-UW will continue to maintain a heavily-instrumented surface mooring (Cha’ba) providing core OA and support parameters 13 miles WNW of La Push, WA, within the Olympic Coast National Marine Sanctuary, just shoreward and south of the Juan de Fuca Eddy---a known harmful algae bloom (HAB) source (Trainer et al., 2009; Hickey et al., 2013). Cha’ba currently houses a MAPCO2 system and many auxiliary sensors including two pH sensors, several CTDs, two oxygen sensors, an ADCP, and a fluorometer/turbidity sensor. Because of budget limitations, lack of ship time, and possessing only one surface mooring, we are only able to deploy the Cha’ba system for 6-8 mo/yr, typically from March-April through September-October. A LOI is attached to this workplan that would allow for continuous 12 mo/yr deployments in order to bring this to the full requirements of NOAA OAP. Cha’ba’s location, in an upwelling zone and near the source waters to Puget Sound via the Strait of Juan de Fuca, offers key insights. While Cha'ba records surface air and seawater conditions with some depth resolution, NANOOS also supports a subsurface profiling mooring 400m away from Cha''ba, measuring full water-column properties below 20m, soon to be instrumented (US IOOS funding) with a real-time HAB detection system, pH sensor and profiling CTD offering broader context and insights on biological responses. Synergies between OA and HAB toxicity have been suggested (Sun et al., 2011). Continuation of the MAPCO2 effort on Cha''ba with these ancillary data will facilitate analysis to further develop our understanding of shelf processes important to OA variability, prediction, and biological responses.

Tuesday, November 8, 2016
Categories: Projects

Moored Observations of Ocean Carbon System Variables in the Southern California Current Ecosystem

UWE Send, Scripps Institution of Oceanography

This project will deploy two interdisciplinary moorings (CCE1 and CCE2) in the southern California Current System, a key coastal upwelling ecosystem along the west coast of North America. The study region forms the dominant spawning habitat for most of the biomass of small pelagic fishes in the entire California Current System, is important for wild harvest of diverse marine invertebrates and fishes, plays a significant role in the ocean carbon budget for the west coast, and is in close proximity to the Channel Islands National Marine Sanctuary. The offshore CCE1 mooring is located in the core flow of the California Current itself, and represents a key source of horizontal transport of nutrients, dissolved gases, and organisms from higher latitudes. It also represents the offshore atmosphere-ocean gas exchange that occurs over a large area and influences the carbon budget of this Eastern Boundary Current. The CCE2 mooring is located near Pt. Conception, one of the major upwelling centers off the west coast. This is a site of strong, episodic upwelling events that lead to marked increases in pCO2, declines in pH and dissolved oxygen, and intrusion of waters unfavorable to precipitation of calcium carbonate by some shell-bearing marine organisms. The proposed work will regularly deploy and service taut line, bottom-anchored moorings at the two mooring sites, with sensors designed to measure all core carbonate system variables specified by the PMEL OA Monitoring Network. The data will be validated with shipboard measurements and rigorous QC procedures, and made freely available via Iridium satellite telemetry. Complementary measurements made by partners in this region include Spray glider-based assessments of calcium carbonate saturation state, CalCOFI shipboard hydrographic and plankton food web measurements, process studies conducted by the CCE-LTER (Long Term Ecological Research) site, and a new experimental Ocean Acidification facility.

PI: Uwe Send

Tuesday, November 8, 2016
Categories: Projects
RSS
12