Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.

Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.

Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).

Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.




Postdoctoral Opportunity: Biogeochemical Modelling

GEOMAR Helmholtz Centre for Ocean Research Kiel

GEOMAR is looking for candidates with a strong interest in Earth system modelling and model assessment. The research project will focus on the selection of indicators and development of metrics to assess a number of climate engineering ideas (such as afforestation, ocean alkalinisation, solar radiation management,…) in the context of mitigation. Tools will be developed and tested on the basis of model simulations of various climate engineering scenarios employing new and already existing runs of intermediate complexity (UVic) and complex Earth system (MPI-ESM) models. Metric development will account for model uncertainties (e.g. by analysing perturbed parameter ensembles) and include collaboration with scientists from other disciplines engaged in the Priority Program, such as social sciences, international law and ethics, and some readiness to engage in interdisciplinary work is required.

Wednesday, November 2, 2016

Postdoctoral Opportunity: Fisheries Oceanography and Eastern Boundary Upwelling Ecosystems

University of South Carolina

The University of South Carolina (Columbia, South Carolina, USA) and the Belle W. Baruch Institute for Marine and Coastal Sciences is seeking a postdoctoral fellow, funded by the Nippon Foundation-Nereus Program, to join our interdisciplinary team of researchers to explore the responses of forage fish populations in eastern boundary upwelling ecosystems to physical and biogeochemical variability associated with future climate change. The goal of the project is estimation of fisheries productivity given projected changes in upwelling intensity and seasonality, nutrient stoichiometry, acidification, and plankton production and composition.

Wednesday, October 12, 2016
Categories: Job Postings

Postdoctoral opportunity: NORTHERN GULF OF MEXICO inorganic carbon, pH, and oxygen DYNAMICS

University of Delaware

Applications are being accepted for a Postdoctoral Research Associate position at the School of Marine Science and Policy, the University of Delaware working with Dr. Wei-Jun Cai, available immediately. This NSF-funded project focuses on the dynamics of inorganic carbon, pH, and oxygen as well as the interactions between ocean acidification and coastal ocean eutrophication in the Mississippi River plume and Northern Gulf of Mexico hypoxic region.

Wednesday, September 14, 2016