BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Development of Ocean Acidification “pHyter” – Plankton Monitoring Tools & Curriculum

Jacqueline Laverdure

NOAA’s National Marine Sanctuaries of the West Coast Region (Olympic Coast, Greater Farallones, Cordell Bank, Monterey Bay and Channel Islands) will partner with Flathead Valley Community College, NOAA’s National Centers for Coastal Ocean Science (NCCOS) and NOAA’s Northwest Fisheries Science Center (NFSC), to increase accessibility and understanding of tools and protocol for ocean acidification monitoring through citizen science and education programs.

Humans and the ocean are inextricably interconnected, with all humans relying on ocean ecosystem outputs such as oxygen, water and food.  Currently, ocean ecosystems are threatened by multiple global change stressors, including ocean acidification (OA).  The development of OA monitoring tools and education curriculum will be instrumental in providing the public with a better understanding of the process of OA and impacts of a more acidic environment to valuable ocean ecosystems.

NOAA’s West Coast Region (WCR) sanctuaries will work with external partner Dr. David Long, of Flathead Valley Community College, to pilot a field-based pH-measuring instrument called ”pHyter” with WCR sanctuaries’ OA education and outreach programs, including citizen science, teacher workshops and student field investigations. Dr. Long  and his students recently developed pHyter: a hand-held chemical indicator-based spectrophotometric pH- measuring device.  OAP funds will support the expansion of pHyter instrument capabilities to permit iPhone and android apps to interface and upload to the international GLOBE Program GIS database, increasing accessibility of pH data.

Friday, April 28, 2017

Local actions and solutions: communicating new perspectives from the frontlines of ocean acidification research

Joshua Brown

Ocean acidification science has evolved rapidly over the past decade. This research landscape has shifted in two important directions. First, the scale of investigation, once limited to global or open ocean scale observations, has broadened with focus on resolving local expression and impacts of OA. Second, research that was almost exclusively restricted to understanding and forecasting exposure and impacts is now complimented by studies on the local actions and solutions for OA mitigation and adaptation. These shifts have created new opportunities for a communications arena where the need for local, solutions-based messages have been identified as key barriers to engagement. At the same time, the lack of effective communications tools that make new research knowledge readily accessible to a range of audience groups has also been recognized as a priority area of need.
 
To address these gaps, we propose to develop a series of audience-specific videos that focuses on local actions and solutions that are underway in Oregon to address OA. By telling the stories of 1) a citizen science OA monitoring network, 2) efforts to breed a better (more OA-resistant) oyster, 3) shellfish hatcheries adapting to change, and 4) new benefits from seagrass beds in mitigating OA, we aim to broaden the OA narrative to include messages of positive actions. We will produce videos that are tailored for 3 groups of audiences (estimated numbers reached): high school students that will receive a new OA curriculum module (~200), aquarium visitors on the Oregon Coast (up to 150,000/yr), and engaged stakeholders visiting a new Oregon ocean story map site (~1000) and/or attend public forums on coastal issues (~400).  The project team comprises a partnership between Oregon Sea Grant, and representatives from academic research (Oregon State University) and environmental NGO’s (Surfrider Foundation).

Friday, April 28, 2017
Categories: Projects

Turning the headlights on 'high': Improving an ocean acidification observation system in support of Pacific coast shellfish growers

Jan Newton, University of Washington

Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.

Wednesday, January 25, 2017
Categories: Projects

Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System

James McWilliams, UCLA/IGPP

The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition.  The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales.  Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.

The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.

Wednesday, January 25, 2017
Categories: Projects

Developing innovative tools to connect stakeholders with NOAA's Ocean Acidification Observing Network (NOA-ON)

Adrienne Sutton and Simone Alin, NOAA Pacific Marine Environmental Laboratory

Students from University of Washington's (UW) College of Computer Science & Engineering (CSE), are looking for local opportunities to apply their newly-acquired skills and gain experience in preparation for a competitive job market. We propose to leverage this local (and economical) tech resource by hiring student interns interested in working with the PMEL Carbon Program's large data collections and developing novel interactive tools for data visualization and communication that would serve the broader community of scientists, resource managers, and other stakeholders. We also propose to develop new 2D and/or 3D visualizations of observational data, model results, model-data comparisons, and conceptual diagrams related to OAP-funded work in the California Current Large Marine Ecosystem to improve the coastal OA community's ability to communicate with stakeholders about observed and forecasted conditions and potential impacts. This work will build on an existing partnership with UW's Center for Environmental Visualization (CEV), which built the PMEL Carbon Program website in 2010 and recently updated our antiquated Google Earth data portal (www.pmel.noaa.gov/co2/map/index). The proposed work will contribute to improving the public's access to and ability to interact with data generated by the NOAA Ocean Acidification Observing Network (NOA-ON) with the goal of increasing awareness and understanding of ocean acidification (OA). 

Wednesday, November 16, 2016
Categories: Projects
RSS
1234