Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.

Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.

Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).

Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.




Turning the headlights on 'high': Improving an ocean acidification observation system in support of Pacific coast shellfish growers

Jan Newton, University of Washington

Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.

Wednesday, January 25, 2017
Categories: Projects

Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System

James McWilliams, UCLA/IGPP

The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition.  The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales.  Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.

The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.

Wednesday, January 25, 2017
Categories: Projects

Multi-Scale Prediction of California Current Carbonate System Dynamics

Burke Hales, Oregon State University

The California Current is a dynamic eastern boundary system that spans the Northeast Pacific from Canada to Baja California, Mexico. Upwelling of cold, nutrient rich water drives multi trophic level productivity throughout much of the domain, but also results in naturally acidic on-shelf waters on regional scales. In addition, anthropogenic CO2 on basin to global scales, and local inputs by eutrophication, fresh water inputs, and local respiration or carbon assimilation result in multiscale and context-specific perturbations to the carbonate system. Thus, to understand, manage, or mitigate the effect of ocean acidification on ocean ecosystems, we need to quantify a suite of carbonate system parameters along the Pacific Coast in a mechanistic, spatially explicit, and temporally dynamic fashion.

We propose to embed an improved semi-analytical carbonate-chemistry prediction model within a dynamic classification of pelagic seascapes derived from satellite remotely sensed variables, including, but not limited to, phytoplankton standing stock (chl-a), SST, and wind stress. We will produce synoptic time series and nowcasts of surface TCO2, TALK, pH and Ω that will facilitate regional comparisons of interannual trends in OA parameters. We will include metrics of model and spatiotemporal uncertainty to better inform management decisions. These maps will be validated with the wealth of multi-parameter OA data generated from recent NOAA-supported field-observational efforts, from coastal moorings, West-coast OA cruises, and shore-based Burke-o-Lators. Statistical analyses will quantify spatially explicit trends across OA parameters, and local deviations from seascape-based predictions will disentangle basin-scale oceanic vs. local drivers of the carbonate system. Maps will be served in near real time on IOOS data portals. Time series and maps will inform marine ecosystem management and provide metrics of ocean health for National Marine Sanctuary condition reports.

Wednesday, November 16, 2016
Categories: Projects

Evaluation of New Subsurface Carbon Technologies for OA Moorings

Adrienne Sutton and Chris Sabine, NOAA Pacific Marine Environmental Laboratory

The PMEL Carbon Group has been augmenting and expanding high-frequency observations on moorings to provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily to inter-annual cycles. The current NOAA Ocean Acidification Observing Network (NOA-ON) consists of 21 moorings in coral, coastal, and open ocean environments. At present, the OA mooring network includes a standardized suite of surface sensors measuring for air and seawater partial pressure of CO2 (pCO2), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. Although OA is primarily driven by uptake of CO2 from the atmosphere, many coastal and estuarine processes that affect water chemistry and the interpretation of coastal OA are manifested in subsurface waters. Furthermore, many of the most sensitive organisms (e.g. corals, shellfish) are benthic and respond to subsurface water chemistry. 

The Moored Autonomous pCO2 (MAPCO2) systems currently used on the 21 OA moorings are uniquely adapted for surface only measurements. PMEL has demonstrated these MAPCO2 systems are compatible with and comparable to ship-based underway pCO2 systems and discrete validation measurements used in the NOA-ON.  However, similar standardized methods and technologies have not been evaluated for subsurface observations on the existing mooring network. Our project evaluates the best carbon system technologies to deploy in the subsurface, demonstrate the utility of these enhanced observations on the moorings, and make recommendations on how advanced technologies can be incorporated into the NOA-ON.

Wednesday, November 16, 2016
Categories: Projects

Sustained OA Cruise Observations

Richard Feely, NOAA Pacific Marine Environmental Laboratory

This project contributes to the NOAA objective to provide accurate and reliable data from sustained and integrated earth observing systems through research, development, deployment, and operation of systems to collect detailed carbonate chemistry measurements as a part of a hydrographic research cruises along the west coast.  The NOAA Ocean Acidification Monitoring Program along North American coastlines (Atlantic, Pacific, Gulf, and Alaskan) and in the global open ocean will focus on mapping and monitoring the distribution of key indicators of ocean acidification including carbon dioxide, pH, and carbonate mineral saturation states. The overarching goal of the program is to determine the trends in ocean acidification (OA) and to provide concrete information that can be used to address acidification issues. The detailed hydrographic research cruises that are planned to be conducted every four years along our coasts are essential for providing high-quality intercalibration data across the full suite of OA observing assets in coastal waters, including well-proven technologies such as the MAPCO2 moored CO2 system and underway pCO2 systems on ships-of-opportunity as well as developing technologies such as wave gliders and sensors for additional carbon parameters. 

The hydrographic cruise measurements facilitate the overall monitoring effort's ability to address the near-term performance measure of quantifying aragonite saturation state in the areas studied to within 0.2.  In addition, the recurring coast-wide cruises allow us a critical opportunity to assess OA conditions along the West Coast in a synoptic fashion.  Cruise-based observations have provided critical information for model validation that is facilitating the improvement of next-generation physical-biogeochemical models projecting OA conditions into the past and the future.

Wednesday, November 16, 2016
Categories: Projects