BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Vulnerability and Adaptation to Ocean Acidification Among Pacific Northwest Mussel and Oyster Stakeholders

David J. Wrathall and George Waldbusser, Oregon State University

Ocean acidification (OA) is already harming shellfish species in the Pacific Northwest, a global hotspot of OA. While OA poses a threat to regional communities, economies, and cultures that rely on shellfish, identified gaps remain in adaptive capacity and vulnerability of several stakeholders. This project will address these gaps by extending long-standing collaborative OA vulnerability research with shellfish growers to include other shellfish users (e.g. port towns, Native American tribes and shellfish sector employees). The project includes five objectives: 1) Map variations in shellfisheries’ exposure to OA and identify those that are most sensitive, 2) quantify production losses from OA and costs of investment in adaptation 3) Identify potential pathways for adaptation, 4) identify key technological, institutional, legislative, financial and cultural barriers to OA adaptation, 5) evaluate the cost of potential adaptation strategies, and develop behavioral models to predict the likelihood of users adopting specific adaptation strategies. The research is designed to identify key vulnerabilities, determine the cost of OA to Pacific Northwest shellfish stakeholders, and to model adaptation pathways for maximizing resilience to OA. The adaptation framework developed here will be replicable in other shellfisheries yet to experience OA impacts.

 



Friday, December 22, 2017
What scientists are learning about the impact of an acidifying ocean

What scientists are learning about the impact of an acidifying ocean

OA-ICC

The effects of ocean acidification on marine life have only become widely recognized in the past decade. Now researchers are rapidly expanding the scope of investigations into what falling pH means for ocean ecosystems.

Wednesday, October 4, 2017
Acidified ocean water widespread along North American West Coast

Acidified ocean water widespread along North American West Coast

Oregon State University

A three-year survey of the California Current System along the West Coast of the United States found persistent, highly acidified water throughout this ecologically critical nearshore habitat, with 'hotspots' of pH measurements as low as any oceanic surface waters in the world.

Wednesday, May 31, 2017

Public Forum: Rosenberg Institute, “Ocean acidification: How does it impact the California Coast?”

April 5, 2017, Bay Conference Center at the Romberg Tiburon Centre, Tiburon, CA

The West Coast of the U.S. sits at the forefront of addressing impacts of OA, due to local oceanography and recent, catastrophic failures at oyster hatcheries over the past decade. Research along the West Coast has brought into sharp focus the potential local consequences of highly acidified seawater for aquaculture operations and California ecosystems more broadly. In response, states have mobilized in developing policy and science recommendations (e.g., WA Ocean Acidification Blue Ribbon Panel, and the West Coast Ocean Acidification and Hypoxia Panel). This talk will review the science of OA, how it is impacting the California Coast, and how the West Coast states have shown leadership in addressing this problem.

Thursday, March 16, 2017
Study predicts decline in Dungeness crab from ocean acidification

Study predicts decline in Dungeness crab from ocean acidification

The Seattle Times

Dungeness crab are forecast to take a hit from ocean acidification driven by fossil- fuel combustion, according to a study released this past week. Though the populations of the Dungeness crab fluctuate year by year, their overall abundance by 2063 could be about 30 percent lower, according to federal fishery biologist Issac Kaplan, a co-author of the study, “We think that there will be a moderate decline in a species that is really economically important,” said Kaplan of the Dungeness, which were valued at some $220 million during the 2013 West Coast commercial season. Read more

Wednesday, January 18, 2017
RSS