BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Low pH in Coastal Waters of the Gulf of Maine: A Data Synthesis-Driven Investigation of Probable Sources, Patterns and Processes Involved

David W. Townsend, University of Maine

Coastal Maine supports valuable lobster, clam, oyster and other shellfish industries that comprise >90% of Maine’s record $616M landed value last year. Earlier monitoring efforts in Maine and New Hampshire have documented periods of unusually acidic conditions in subsurface waters of Maine’s estuaries, which may be driven by episodic influxes of waters from the Gulf’s nutrient-rich, highly productive coastal current system. Sources of acidity to the estuaries also include the atmosphere, freshwater fluxes, and local eutrophication processes, all modulated by variability imparted by a number of processes.This project is a data synthesis effort to look at long-term trends in water quality data to identify the key drivers of acidification in this area. Extensive data sets dating back to the 1980s (including carbonate system, hydrography, oxygen, nutrients, and other environmental variables) will be assembled, subjected to QA/QC, and analyzed to assess acidification events in the context of landward, seaward and direct atmospheric sources, as may be related to processes operating on tidal to decadal timescales. Such analyses are requisite for any future vulnerability assessments of fishery-dependent communities in Maine and New Hampshire to the effects of coastal acidification.

Friday, December 22, 2017

A Strategy for Ocean and Coastal Acidification (OCA) Education and Citizen Science Monitoring in the Northeast

Beth Turner

This project will cross-calibrate citizen science monitoring protocols for ocean acidification among independent organizations in the Northeast by developing a replicable citizen science monitoring training program. This will be accomplished by providing trainings and materials specific for volunteer and citizen science audiences through a series of regional workshops. The project team will (1) develop the first replicable citizen science monitoring program in accordance with recently developed EPA guidance document, Guidelines for Measuring Changes in Seawater pH and Associated Carbonate Chemistry in Coastal Environments of the Eastern United States, (2) provide in-person technical trainings and educational materials through an initial series of three regional workshops in Maine, Massachusetts and Connecticut and (3) support the successful use of citizen science participation in research and management by building on the Northeast Coastal Acidification Network’s extensive capacity and stakeholder network.

Friday, April 28, 2017
Categories: Projects

Tracking Ocean Alkalinity using New Carbon Measurement Technologies (TAACT)

Joe Salisbury

This project will expand the quantity and quality of ocean acidification (OA) monitoring across Northeastern U.S. coastal waters. The new OA data and incorporation of the world’s first commercial total alkalinity (TA) sensor into our regional observing system (NERACOOS) are designed to supply needed baseline information in support of a healthy and sustainable shellfish industry, and to aid in assessments and projections for wild fisheries. In working with partners to develop this proposal, clear concerns were brought forward regarding the potential impacts of increasing ocean acidity that extend from nearshore hatcheries and aquaculture to broader Gulf of Maine finfish and shellfish industries and their management. Stakeholder input and needs shaped the project scope such that both nearshore and offshore users will be served by TA sensor deployments on partner platforms, including time series data collection at an oyster aquaculture site, on the NOAA Ship of Opportunity AX-2 line, and on federal and State of Maine regional fish trawl surveys. In all, five different deployment platforms will be used to enhance ocean acidification monitoring within the Northeast Coastal Acidification Network (NE-CAN) with significant improvement in temporal and spatial coverage.

 Adding the all-new TA measurement capability to the regional observation network will provide more accurate, certain, and reliable OA monitoring, and an important project objective is to demonstrate and relay this information to regional partners. Data products to be developed from the multi-year measurements include nearshore and offshore baseline OA seasonal time series as well as threshold indices tied to acidification impacts on larval production at the Mook Sea Farm oyster hatchery. An outreach and technical supervision component will include the transfer of carbonate system observing technologies to our partners and to the broader fishing industry, resource management, and science communities. NERACOOS will provide data management and communication (DMAC) services and work towards implementing these technological advances into the IOOS network.

Wednesday, January 25, 2017
Categories: Projects

Interactions between ocean acidification and eutrophication in estuaries: Modeling opportunities and limitations for shellfish restoration

Jeremy Testa, University of Maryland Center for Environmental Science (UMCES) Chesapeake Biological Laboratory

The objective of this project is to make significant strides in bridging the gap between scientific knowledge and current management needs by integrating existing biogeochemical model frameworks, field measurements, and experimental work toward the goals of (1) delineating atmospheric and eutrophication drivers of Chesapeake Bay acidification and improve our understanding of estuarine carbonate chemistry, (2) developing a spatially explicit framework to identify shellfish restoration areas most and least prone to acidification impacts, and (3) better understanding feedbacks associated with future environmental conditions and shellfish restoration goals estuary-wide and within a model tributary. This effort includes (1) a field campaign to make the first comprehensive study of the spatial and temporal variability in the carbonate system in Chesapeake Bay, (2) experiments to quantify both carbonate and nutrient exchange between intact oyster reefs and the surrounding water while measuring response of these fluxes to reef structure and acidification, and (3) an advancement in numerical modeling tools to simultaneously simulate the dynamics of eutrophication, hypoxia, carbonate chemistry, and oyster reef growth and interaction with the water-column under present and future conditions.

Wednesday, January 25, 2017
Categories: Projects

Flexing mussels: Does Mytilus edulis have the capacity to overcome effects of Ocean Acidification?

Dianna K Padilla, Stony Brook University

We are likely to see "winners", those species or individuals that are most resilient in the face of climate change, and "losers" those species or individuals that are least capable of robust performance under stressful conditions.  At present, we cannot predict winners and losers, and do not know whether responses to environmental stress are primarily driven by phenotypic plasticity, broad performance under different environmental conditions, or if there are genetic or epigenetic factors that can result in cross-generational directional changes in populations, resulting in more resilience under stressful conditions of OA.   This project has two objectives: 

1)  To test for cross-generational adaptation to the impacts of increasing ocean acidification on blue mussels, either through phenotypic acclimation or through heritable changes. 

2)  To determine if there are tradeoffs in growth and development across life stages in response to stress induced by ocean acidification in blue mussels.\

The results of our experiments can then be used to develop management practices for wild populations and more robust aquaculture practices for blue mussels. From an aquaculture perspective, if animals from certain source populations are more resilient to OA stress, those locations could be targeted for collection of wild seed that will produce resilient mussels in aquaculture leases.  Furthermore, the environmental characteristics of these advantageous site(s) could then be characterized to predict other sites that may also produce resilient mussels.  Overall, the data obtained from this proposed work could be used to enhance mussel culture, an economically important activity of growing importance in our region.

Wednesday, January 25, 2017
Categories: Projects
RSS
123