New tool helps oyster growers prepare for changing ocean chemistry

NOAA Research

For Bill Mook, coastal acidification is one thing his oyster hatchery cannot afford to ignore.

Mook Sea Farm depends on seawater from the Gulf of Maine pumped into a Quonset hut-style building where tiny oysters are grown in tanks. Mook sells these tiny oysters to other oyster farmers or transfers them to his oyster farm on the Damariscotta River where they grow large enough to sell to restaurants and markets on the East Coast.

Tuesday, September 6, 2016

POSTDOCTORAL OPPORTUNITY: Combined effects of warming, acidification and deoxygenation on marine fish

University of Connecticut

The Baumann lab is looking for a motivated post-doc to complement my lab in 2017, helping to study the combined effects of warming, acidification and deoxygenation on marine fish, in particular on early live stages. We look for a candidate to conduct novel multistressor experiments within and across generations of key forage fish such as Atlantic silversides (Menidia menidia) or Northern sand lance (Ammodytes dubius). This NSF funded work will elucidate short-term as well as whole life cycle consequences of multistressor environments using a mixture of field, experimental and modeling approaches. The ideal candidate will try to broaden the scope of the research of our lab by bringing novel aspects, approaches, or techniques to our existing expertise.

Friday, August 5, 2016
Categories: OAP Opportunities
RSS

Search OAP News