OAP Projects in the california current ecosystem


Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

David Whitall - NOAA National Centers for Coastal Ocean Science

Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety

Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety. 

What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.

Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.


Wednesday, August 31, 2022
Impacts of Ocean Acidification on Alaskan and Arctic fishes

Impacts of Ocean Acidification on Alaskan and Arctic fishes

Tom Hurst - Alaska Fisheries Science Center

Effects of OA on Alaskan and Arctic fishes: physiological sensitivity in a changing ecosystem

Why we care
There is significant concern about ocean acidification disrupting marine ecosystems, reducing productivity of important fishery resources, and impacting the communities that rely upon those resources. To predict the ecological and socioeconomic impacts of acidification, it is critical to understand the complex interactions between environmental stressors of physiology and ecology of marine fishes. Previous work on Alaskan groundfish focused on direct physiological effects of OA on early life stages. We need to further this work to understand the interaction between OA and co-stressors like elevated temperatures on fish productivity. 

What we are doing 
This AFSC project examines the interactive effects of OA and elevated temperatures on three fish species that are critical to Alaska and Arctic fisheries: Pacific cod, Arctic cod, and yellowfin sole. Laboratory experiments will track the impact of OA exposure on adult Arctic cod reproductive output, egg quality, and larval production. Further experiments will consider the potential for within-generation and trans-generational acclimation and adaptation to environmental changes. Risk assessments for regional fisheries will incorporate the data from this project.

Benefits of our work
Findings from this research will provide the foundation necessary to evaluate the ecological and socioeconomic impacts of ocean acidification in Alaskan and Arctic waters.


Wednesday, August 31, 2022
Surveying the state of ocean acidification along the U.S. West Coast

Surveying the state of ocean acidification along the U.S. West Coast

Richard Feely - Pacific Marine Environmental Laboratory

PMEL Sustained Ocean Acidification Biogeochemical and Ecological Survey Observations

Why we care
U.S. West coast-wide hydrographic surveys have been conducted intermittently from 2007 to 2017, providing evidence for the geographic extent and severity of ocean acidification in the continental shelf ecosystem. Scientists on the NOAA West Coast Ocean Acidification (WCOA) discovered that the combined effects of anthropogenic and biologically-derived carbon dioxide resulted in significant biological impacts for oyster larvae and pteropods, which are small, ecologically important mollusks for the food web. 

What we are doing
This project executes a large-scale survey of ocean acidification carbonate chemistry in the California Current System and continues processing data and publishing scientific papers based on 2016 and 2017 surveys findings. This survey determines the spatial distributions of temperature, salinity, pH, dissolved inorganic carbon, total alkalinity, oxygen, nutrients, and biological parameters along the west coast of North America. Survey results will provide the basis for accurate assessments of changing ocean chemistry in the following areas: 1) spatial variability; 2) extent and causes of long-term changes in carbonate system parameters and their impacts on calcifying (shell-building) organisms; and 3) empirical relationships for obtaining high-resolution information on ocean acidification collected on moorings. 

Benefits of our work
This project links the combined stressors of increased temperature, acidification, and hypoxia (low oxygen) with effects on marine organisms in the region and identifies spatial variability of acidifying conditions during the spring/summer upwelling season. In addition to scientific partners, this project engages a NOAA Teacher At Sea (TAS) fellow on the cruise to help develop outreach and education on West Coast ocean acidification.


Wednesday, August 31, 2022
Salmon and sablefish responses to elevated carbon dioxide

Salmon and sablefish responses to elevated carbon dioxide

Andrew Dittman - Northwest Fisheries Science Center

Resiliency and sensitivity of marine fish to elevated CO2: osmoregulatory neurosensory behavioral and metabolic responses in salmon and sablefish

Why we care
Elevated levels of marine carbon dioxide can disrupt how many marine fishes detect their environment, impairing their ability to respond appropriately to chemical, auditory, and visual cues. The mechanisms underlying differences in species sensitivity and resilience are poorly understood. This NWFSC project will explore the mechanisms underlying differences in carbon dioxide sensitivity between marine species that occupy habitats with different carbonate chemistries.

What we are doing
We will compare regulatory capabilities and behavioral responses of sablefish and salmon to improve our understanding of how future fish populations may adapt to changing ocean chemistries. Our primary objectives are to build on existing OA infrastructure and previous research at the Northwest Fisheries Science Center to determine: 1) the mechanisms underlying sablefish resilience to low pH waters, and 2) the potential behavioral and physiological impacts of low pH exposure in pink and Chinook salmon. 

Benefits of our work
Pacific salmon and sablefish are key species in the marine ecosystems of the western United States. They are an integral part of the history, culture, and economy of the West Coast and Alaska. This research advances our understanding of impacts of OA on salmon and sablefish behaviors and sensory systems. Findings enable fishery managers and scientific partners to identify species, populations, and geographic areas of concern. Ultimately, project results will inform managers about the resiliency and sensitivity of salmon to OA and assist their efforts for conservation priorities.


Wednesday, August 31, 2022
Effects of ocean acidification and temperature on Alaskan crabs

Effects of ocean acidification and temperature on Alaskan crabs

Chris Long - NOAA/NMFS Alaska Fisheries Science Center

Effects of predicted changes in ocean pCO2 and interactions with other stressors on the physiology and behavior of commercially important crabs in Alaska

Why we care 
Ocean acidification disrupts the internal acid-base balance of crabs and may hinder the creation and maintenance of shells. Previous studies on commercially important crab species in Alaska found that ocean acidification changes physiology, decreases growth and condition, increases mortality, decreases hatching success, and changes exoskeleton (shell) hardness and structure in many Alaska crab species. Ocean temperature is a co-stressor, which may either decrease or increase the effects of ocean acidification on crabs. These individual effects may lead to population level decreases and impact coastal communities that rely on them if these crabs are unable to acclimate or adapt.

What we are doing
The Alaska Fisheries Science Center (AFSC) aims to enhance our understanding of species responses to ocean acidification, predict how changes in ocean chemistry will affect marine ecosystems and organisms, assess socioeconomic impacts, and provide ocean acidification education and outreach. This project continues to assess the physiological response to ocean acidification of early life history stages in crabs. Researchers will examine the potential for acclimation of crab species through experimentation. Experimental data will be used to inform modeling efforts to assess the dynamics of the crab populations and coastal community resilience to future environmental changes in the ocean.

Benefits of our work
The AFSC team will continue to address individual physiological responses that can be scaled to population level effects. Additionally, we will focus on cellular and molecular responses to better understand the potential for acclimation or adaptation. Results from this project will inform models, including stock assessments for long-term fisheries management through the North Pacific Fisheries Management Council.


Wednesday, August 31, 2022
Modeling the impact of OA on Alaskan fisheries for decision makers

Modeling the impact of OA on Alaskan fisheries for decision makers

Michael Dalton - Alaska Fisheries Science Center

Forecast effects of ocean acidification on Alaska crab and groundfish fisheries

Why we care
Ocean acidification (OA) is a multi-disciplinary problem that requires a combination of methods from oceanography, fisheries science, and social science to assess socio-economic impacts. While OA impact models developed to date capture some sources of measurement uncertainty, more remains and limits the utility of models in decision making and research planning. A method is needed to quantify uncertainty relating the experimental design of OA experiments to the impacts of ocean pH and temperature on key model outcomes.

What we are doing
The bioeconomic model developed under this project will be applied to forecasting long-term effects of OA on Eastern Bering Sea (EBS) crab, northern rock sole and Alaska cod. Also addressed in this project is the quantification of uncertainty for inclusion in the fisheries management process. The overall goal for this project is to forecast long-term effects of OA on abundance yields and fishery income. To this end, we will apply results from experiments and ocean monitoring/modeling to infer population-scale changes in juvenile growth and survival from OA.

Benefits of our work
Through development of bioeconomic models for the EBS and Gulf of Alaska, we will be able to forecast the long-term effects of OA on northern rock sole and Alaska cod – a fish providing the vast majority of U.S. cod. These models make it possible to estimate abundance yields, fishery income, and economic impacts of OA on a national scale. The results from the project can assist with the development of experiments that will be most informative for bioeconomic modeling.


Wednesday, August 31, 2022

Assessing Ocean Acidification in Alaska Fishery Zones

Jessica Cross - Pacific Marine Environmental Laboratory

Sustained Observations of Ocean Acidification in Alaska Coastal Seas

Why we care
Coastal regions around Alaska experience some of the most rapid and extensive progressions of ocean acidification (OA) in the United States. Assessments indicate that Alaska coastal communities have a varying degree of vulnerability to OA ranging from moderate to severe. Economically vital fishing regions are the most vulnerable. Sustained monitoring is critical to track the extent and impact of ocean acidification in habitats that are home to sensitive species such as red king crab in the Bering Sea.

What we are doing
This project “rethinks” the coastal Alaskan OA monitoring effort (initiated in 2015) by sampling Alaska waters directly through the annual population survey program of the Alaska Fisheries Science Center (AFSC). This new vision doubles the spatial footprint of Alaska OA observations, increases the time resolution of these observations, and complements shipboard surveys in Alaska. Carbonate chemistry samples will be combined with fisheries population surveys to assess OA in the habitats of keystone organisms in the Bering Sea and Gulf of Alaska. 

Benefits of our work
This project enhances our understanding of how the accumulation of anthropogenic carbon dioxide affects the seasonal progression of carbonate carbonate chemistry variables in the Gulf of Alaska. The observations can also be used to validate new OA models developed for the Gulf of Alaska and Bering Sea. Additionally, it can be applied to bioeconomic forecast models of crab and walleye pollock providing insight on how to adapt and build resilience to impacted industries and communities.


Wednesday, August 31, 2022
Evaluating impacts of acidification on biological processes in the Gulf of Mexico

Evaluating impacts of acidification on biological processes in the Gulf of Mexico

Leticia Barbero - NOAA CIMAS, University of Miami

Evaluation of OA impacts to plankton and fish distributions in the Gulf of Mexico during GOMECC-4 with a focus on HAB-interactions

Why we care
Ocean change in the Gulf of Mexico, including acidification and eutrophication, can impact biodiversity and the flow of energy through ecosystems from microscopic phytoplankton to higher trophic levels like fish. These processes can impact the health of fisheries and coastal ecosystems. This project collects information to evaluate the links between ocean conditions and important species in the Gulf of Mexico. 

What we are doing
During the 4th Gulf of Mexico Ecosystem and Carbon Cruise (GOMECC-4), scientists collect samples of phytoplankton, zooplankton, and ichthyoplankton to characterize fish distribution and abundance, larval fish condition and diet, microplastic abundance, and harmful algal bloom species. These collections coincide with measurements of acidification, oxygen, and eutrophication to make connections between ocean chemistry and biology.

Benefits of our work
This project will help characterize how changes in ocean conditions interact with biological processes like harmful algal bloom formation and ecosystem productivity that are important to local fisheries and stakeholders.


Wednesday, August 31, 2022
Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Simone Alin - Pacific Marine Environmental Laboratory

PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)

Why we care
Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.


What we are doing 
The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection. 

Benefits of our work
This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.


Wednesday, August 31, 2022

Assessing risks of ocean acidification in south-central and southeast Alaska

Tom Hurst - NOAA Alaska Fisheries Science Center

Evaluating ocean acidification vulnerability and interactions among traditional and coastal Alaska industries

Why we care
Many marine species affected by ocean acidification (OA) contribute to Alaska’s highly productive commercial fisheries and traditional subsistence ways of life. Concern exists that acidification will cause ecosystem-level shifts, diminishing the overall economic value of commercial fisheries and reducing food security for communities relying on subsistence harvests. 

What we are doing
This project addresses acidification threats in south-central and southeast Alaska. It involves the development of decision support tools incorporating acidification risks into localized socio-ecological systems. The tools are based on a network of models representing acidification hazards, bio-ecological systems, and socioeconomic systems linked to adaptive actions.

Benefits of our work
This project is an exchange of knowledge between scientists, policy makers, and community stakeholders. The network of models creates decision support tools responsive to stakeholder concerns that reflect regional variation in community priorities and their ecological social and management context. The project synthesizes the best available science to determine the risks posed by ocean acidification.

Thursday, June 23, 2022

Next-Gen gene sequencing to understand effects of ocean acidification on Alaskan crab and fish

Chris Long - NOAA/NMFS Alaska Fisheries Science Center

Using next-generation sequencing techniques to assess adaptive capacity and illuminate mechanisms underlying the effects of high pCO2 on Alaskan crab and fish species

Why we care
Many economically important crab and fish species are negatively affected by exposure to ocean acidification predicted to occur throughout their ranges in the coming decades. Ocean acidification results in decreased growth, altered development, weaker exoskeletons, increased energy outputs, altered immune systems, altered behavior, and increased mortality in some of these species. Other stressors such as increased temperature can have interactive negative effects when combined with ocean acidification. Traditional laboratory experiments cannot duplicate the gradual changes that will affect species populations over multiple life-history stages and generations, so using next-generation genetic approaches provide insight into effects beyond specific life stages.

What we are doing 
This study will use next-generation sequencing techniques to identify specific alterations in the molecular, metabolic, and physiological pathways of individuals exposed to ocean acidification. This is a way to identify pathways that impart tolerance to ocean acidification and warming. This project determines the effect of ocean acidification and thermal stress on gene expression in Pacific cod larvae and juvenile Tanner crab and identifies genetic markers indicating ocean acidification resilience. 

Benefits of our work
Investigators will identify the cellular pathways that impart tolerance to ocean acidification. By comparing individuals that demonstrate low sensitivity to ocean acidification and with the general population, we enhance the ability to predict how adaptation will alter the species’ response to future ocean conditions. This research will inform the fishing industry and coastal, fisheries-dependent Alaskan communities about potential effects of ocean change on commercially important species. Outcomes can be used to drive future responses and adaptations in these industries regarding affected fisheries.

Thursday, May 26, 2022
Regional Vulnerability Assessment in the Hawaiian Archipelago

Regional Vulnerability Assessment in the Hawaiian Archipelago

Chris Sabine - University of Hawai’i at Manoa

Assessing Current and Future Ocean Acidification and Climate Vulnerabilities Along the Hawaiian Archipelago

Why we care
The Insular Pacific-Hawaiian Large Marine Ecosystem (IPH-LME) Complex provides critical benthic and oceanographic habitats for important fisheries and protected resources. A critical missing piece in assessing vulnerability in the Hawaiian Islands to ocean change is understanding the variability of ocean properties and ocean acidification in space and time. Coral reef managers are particularly challenged with sustaining the ecosystem functions and services under changing environmental and human impacts.

What we are doing
This project takes a modeling approach to link the state of the ecosystem with societal outcomes to assess risk vulnerability in the IPH-LME. Researchers will combine state-of-the-art climate, regional, and coral reef ecosystem models with satellite assessments of ocean acidification. Results will provide robust projections of ocean acidification-related stress across the IPH-LME for the next 5 decades (2020-2070. Societal data will be collected through interviews, workshops, and community surveys to expand the number of relationships modeled. Vulnerability of the Hawaiian Islands to the projected ocean acidification-related stress will be evaluated using relationships between ecological and social state components. Resource managers will evaluate tradeoffs between different management practices and climate futures to determine which interventions would be most effective in supporting ecosystem integrity while enhancing societal wellbeing in the face of ocean acidification.

Benefits of our work
Collaboration between scientists, managers, non-governmental organizations, and resource users will help ensure that socio-economic and biophysical processes are both considered when evaluating consequences of policy decisions and climate projections. This transdisciplinary approach provides opportunities to build relationships among the project stakeholders. This project directly supports the Hawai‘i Division of Aquatic Resources (DAR) in its efforts to develop vulnerability analyses and a state action plan for ocean acidification to build adaptation and resilience in communities affected by ocean acidification. The social vulnerability analysis method developed under this project will have broad applicability

Thursday, March 10, 2022

Research to inform adaptation decisions for Alaska’s Salmon Fisheries

David Finnoff, University of Wyoming

Alaska is expected to experience ocean acidification faster than any other United States coastal waters, primarily due to its colder water which absorbs more carbon dioxide than warmer waters. With seafood industry job incomes over $1.5 billion annually and a communities that rely on healthy oceans for subsistence, nutrition, and culture, increased ocean acidification is expected to have significant implications. Research on the potential impact to salmon has emerged as one of the top priorities, identified during a 2016 statewide workshop and stakeholder survey. Despite the economic importance of salmon, little research has been done on the effects of ocean acidification on salmon and the fishing industry and communities that depends on salmon. Acidification has been shown to impair coho salmon’s ability to smell and detect their prey. It has also been shown to reduce pink salmon growth rates. In addition, future ocean acidification is expected to affect salmon prey species, which is expected to affect Pacific salmon survival, abundance and productivity. This project will investigate the implication of ocean acidification thresholds and major ecosystem shifts in the Gulf of Alaska on salmon. Integrated human-ecological models will be developed to simulate management scenarios to assess the benefits of pre-emptive adaptation planning and policy making. The information from modeling these scenarios will help create decision tools for salmon managers.
Tuesday, October 2, 2018
RSS