OAP Projects in the california current ecosystem


Salmon and sablefish responses to elevated carbon dioxide

Salmon and sablefish responses to elevated carbon dioxide

Andrew Dittman - Northwest Fisheries Science Center

Resiliency and sensitivity of marine fish to elevated CO2: osmoregulatory neurosensory behavioral and metabolic responses in salmon and sablefish

Why we care
Elevated levels of marine carbon dioxide can disrupt how many marine fishes detect their environment, impairing their ability to respond appropriately to chemical, auditory, and visual cues. The mechanisms underlying differences in species sensitivity and resilience are poorly understood. This NWFSC project will explore the mechanisms underlying differences in carbon dioxide sensitivity between marine species that occupy habitats with different carbonate chemistries.

What we are doing
We will compare regulatory capabilities and behavioral responses of sablefish and salmon to improve our understanding of how future fish populations may adapt to changing ocean chemistries. Our primary objectives are to build on existing OA infrastructure and previous research at the Northwest Fisheries Science Center to determine: 1) the mechanisms underlying sablefish resilience to low pH waters, and 2) the potential behavioral and physiological impacts of low pH exposure in pink and Chinook salmon. 

Benefits of our work
Pacific salmon and sablefish are key species in the marine ecosystems of the western United States. They are an integral part of the history, culture, and economy of the West Coast and Alaska. This research advances our understanding of impacts of OA on salmon and sablefish behaviors and sensory systems. Findings enable fishery managers and scientific partners to identify species, populations, and geographic areas of concern. Ultimately, project results will inform managers about the resiliency and sensitivity of salmon to OA and assist their efforts for conservation priorities.


Wednesday, August 31, 2022

Assessing Ocean Acidification in Alaska Fishery Zones

Jessica Cross - Pacific Marine Environmental Laboratory

Sustained Observations of Ocean Acidification in Alaska Coastal Seas

Why we care
Coastal regions around Alaska experience some of the most rapid and extensive progressions of ocean acidification (OA) in the United States. Assessments indicate that Alaska coastal communities have a varying degree of vulnerability to OA ranging from moderate to severe. Economically vital fishing regions are the most vulnerable. Sustained monitoring is critical to track the extent and impact of ocean acidification in habitats that are home to sensitive species such as red king crab in the Bering Sea.

What we are doing
This project “rethinks” the coastal Alaskan OA monitoring effort (initiated in 2015) by sampling Alaska waters directly through the annual population survey program of the Alaska Fisheries Science Center (AFSC). This new vision doubles the spatial footprint of Alaska OA observations, increases the time resolution of these observations, and complements shipboard surveys in Alaska. Carbonate chemistry samples will be combined with fisheries population surveys to assess OA in the habitats of keystone organisms in the Bering Sea and Gulf of Alaska. 

Benefits of our work
This project enhances our understanding of how the accumulation of anthropogenic carbon dioxide affects the seasonal progression of carbonate carbonate chemistry variables in the Gulf of Alaska. The observations can also be used to validate new OA models developed for the Gulf of Alaska and Bering Sea. Additionally, it can be applied to bioeconomic forecast models of crab and walleye pollock providing insight on how to adapt and build resilience to impacted industries and communities.


Wednesday, August 31, 2022
RSS