Accelerating Ocean Acidification Sensor Development
Why we care After nearly a decade, the NOAA Ocean Acidification Observing Network (NOA-ON) has reached the maturity level where a sustained effort to refresh its core technology, the Moored Autonomous pCO2 (MAPCO2), is necessary to maintain the current monitoring level. There is also the pressing need to develop technology to both improve the accuracy and reliability of the measurement of a second carbonate system parameter (dissolved inorganic carbon, DIC) in order to better measure and understand ocean acidification (OA).
What we are doing We will develop a modestly-priced, mass-producible, climate-quality surface ocean system that will measure 2 key parameters (pCO2, DIC) of the oceans carbonate (buffering) system. The system will be deployable on a variety of autonomous platforms and vehicles to meet the needs of both the ocean acidification and surface ocean carbon dioxide international observing networks.
Benefits of our work The NOA-ON network can sustain these important observations while adding the ability to autonomously observe the ocean with a measurement quality sufficient to detect long-term changes in ocean acidification. This is a priority task for NOA-ON, the Global Ocean Acidification Observing Network (GOA-ON) and others that cannot be accomplished with current technology. The pCO2-DIC sensor developed under this project will contribute towards better assessment of the vulnerability of U.S. waters to ocean acidification by providing access to real time information about the variability of OA, meeting the needs of several stakeholders in the marine resource community.
PMEL Sustained Ocean Acidification Biogeochemical and Ecological Survey Observations
Why we care U.S. West coast-wide hydrographic surveys have been conducted intermittently from 2007 to 2017, providing evidence for the geographic extent and severity of ocean acidification in the continental shelf ecosystem. Scientists on the NOAA West Coast Ocean Acidification (WCOA) discovered that the combined effects of anthropogenic and biologically-derived carbon dioxide resulted in significant biological impacts for oyster larvae and pteropods, which are small, ecologically important mollusks for the food web.
What we are doing This project executes a large-scale survey of ocean acidification carbonate chemistry in the California Current System and continues processing data and publishing scientific papers based on 2016 and 2017 surveys findings. This survey determines the spatial distributions of temperature, salinity, pH, dissolved inorganic carbon, total alkalinity, oxygen, nutrients, and biological parameters along the west coast of North America. Survey results will provide the basis for accurate assessments of changing ocean chemistry in the following areas: 1) spatial variability; 2) extent and causes of long-term changes in carbonate system parameters and their impacts on calcifying (shell-building) organisms; and 3) empirical relationships for obtaining high-resolution information on ocean acidification collected on moorings.
Benefits of our work This project links the combined stressors of increased temperature, acidification, and hypoxia (low oxygen) with effects on marine organisms in the region and identifies spatial variability of acidifying conditions during the spring/summer upwelling season. In addition to scientific partners, this project engages a NOAA Teacher At Sea (TAS) fellow on the cruise to help develop outreach and education on West Coast ocean acidification.
PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)
Why we care Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.
What we are doing The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection.
Benefits of our work This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.
Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.
The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition. The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales. Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.
The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.
The California Current is a dynamic eastern boundary system that spans the Northeast Pacific from Canada to Baja California, Mexico. Upwelling of cold, nutrient rich water drives multi trophic level productivity throughout much of the domain, but also results in naturally acidic on-shelf waters on regional scales. In addition, anthropogenic CO2 on basin to global scales, and local inputs by eutrophication, fresh water inputs, and local respiration or carbon assimilation result in multiscale and context-specific perturbations to the carbonate system. Thus, to understand, manage, or mitigate the effect of ocean acidification on ocean ecosystems, we need to quantify a suite of carbonate system parameters along the Pacific Coast in a mechanistic, spatially explicit, and temporally dynamic fashion.
We propose to embed an improved semi-analytical carbonate-chemistry prediction model within a dynamic classification of pelagic seascapes derived from satellite remotely sensed variables, including, but not limited to, phytoplankton standing stock (chl-a), SST, and wind stress. We will produce synoptic time series and nowcasts of surface TCO2, TALK, pH and Ω that will facilitate regional comparisons of interannual trends in OA parameters. We will include metrics of model and spatiotemporal uncertainty to better inform management decisions. These maps will be validated with the wealth of multi-parameter OA data generated from recent NOAA-supported field-observational efforts, from coastal moorings, West-coast OA cruises, and shore-based Burke-o-Lators. Statistical analyses will quantify spatially explicit trends across OA parameters, and local deviations from seascape-based predictions will disentangle basin-scale oceanic vs. local drivers of the carbonate system. Maps will be served in near real time on IOOS data portals. Time series and maps will inform marine ecosystem management and provide metrics of ocean health for National Marine Sanctuary condition reports.
The PMEL Carbon Group has been augmenting and expanding high-frequency observations on moorings to provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily to inter-annual cycles. The current NOAA Ocean Acidification Observing Network (NOA-ON) consists of 21 moorings in coral, coastal, and open ocean environments. At present, the OA mooring network includes a standardized suite of surface sensors measuring for air and seawater partial pressure of CO2 (pCO2), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. Although OA is primarily driven by uptake of CO2 from the atmosphere, many coastal and estuarine processes that affect water chemistry and the interpretation of coastal OA are manifested in subsurface waters. Furthermore, many of the most sensitive organisms (e.g. corals, shellfish) are benthic and respond to subsurface water chemistry.
The Moored Autonomous pCO2 (MAPCO2) systems currently used on the 21 OA moorings are uniquely adapted for surface only measurements. PMEL has demonstrated these MAPCO2 systems are compatible with and comparable to ship-based underway pCO2 systems and discrete validation measurements used in the NOA-ON. However, similar standardized methods and technologies have not been evaluated for subsurface observations on the existing mooring network. Our project evaluates the best carbon system technologies to deploy in the subsurface, demonstrate the utility of these enhanced observations on the moorings, and make recommendations on how advanced technologies can be incorporated into the NOA-ON.
This project contributes to the NOAA objective to provide accurate and reliable data from sustained and integrated earth observing systems through research, development, deployment, and operation of systems to collect detailed carbonate chemistry measurements as a part of a hydrographic research cruises along the west coast. The NOAA Ocean Acidification Monitoring Program along North American coastlines (Atlantic, Pacific, Gulf, and Alaskan) and in the global open ocean will focus on mapping and monitoring the distribution of key indicators of ocean acidification including carbon dioxide, pH, and carbonate mineral saturation states. The overarching goal of the program is to determine the trends in ocean acidification (OA) and to provide concrete information that can be used to address acidification issues. The detailed hydrographic research cruises that are planned to be conducted every four years along our coasts are essential for providing high-quality intercalibration data across the full suite of OA observing assets in coastal waters, including well-proven technologies such as the MAPCO2 moored CO2 system and underway pCO2 systems on ships-of-opportunity as well as developing technologies such as wave gliders and sensors for additional carbon parameters.
The hydrographic cruise measurements facilitate the overall monitoring effort's ability to address the near-term performance measure of quantifying aragonite saturation state in the areas studied to within 0.2. In addition, the recurring coast-wide cruises allow us a critical opportunity to assess OA conditions along the West Coast in a synoptic fashion. Cruise-based observations have provided critical information for model validation that is facilitating the improvement of next-generation physical-biogeochemical models projecting OA conditions into the past and the future.
PMEL's surface observational network, consisting of the complementary moorings and underway observations, is designed to quantify the temporal and spatial scales of variability of carbon species, pH, and aragonite saturation in surface waters. To assess spatial dynamics in OA and evaluate the synergistic effects of coastal processes along the coasts and in the open ocean, we will leverage our Ship of Opportunity Program (SOOP) infrastructure along the U.S. west coast. Underway observations have been enhanced by the collection and analysis of discrete DIC and TA samples beginning in FY 2010.
The primary objectives of our underway OA FY 2015–2017 sustained investment work plan are to maintain existing underway observations on NOAA Ships Oscar Dyson and Bell Shimada with autonomous pCO2, pH, and ancillary sensors that cover the continental shelf regions of Alaska, Washington, Oregon, and California. We plan to work with Dr. Rik Wanninkhof''s group at AOML to ensure that the underway OA system on NOAA Ship Ronald Brown is working well for the FY2016 West Coast Ocean Acidification cruise. In addition to making ongoing observations from existing OAP-funded CO2/pH SOOP platforms, during this funding period we are placing a major emphasis on finalizing QC on backlogged underway pH and DO data, distributing the final data to CDIAC and NODC data archives, and data synthesis and publication efforts. These efforts are being undertaken in conjunction with other members of the PMEL Carbon Group, the PMEL Science Data Integration Group, our AOML sister group, and Dr. Todd Martz at Scripps Institution of Oceanography. Finally, under the OAP SI FY15-17 work plan, we will continue to maintain the pH and O2 sensors that are presently on the container ship Cap Blanche and contribute to the trans-Pacific decadal time-series.
Since ocean acidification (OA) emerged as an important scientific issue, the PMEL Carbon Group has been augmenting and expanding our observational capacity by adding pH and other biogeochemical measurements to a variety of observing platforms. In particular, high-frequency observations on moorings provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily, seasonal, and interannual cycles. The current NOAA OA mooring network consists of 21 moorings in coral, coastal, and open ocean environments (Figure 1). At present, the OA mooring network includes surface measurements of CO2 (seawater and atmospheric marine boundary layer), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. The main objective of this network is to quantify temporal variability in the ocean carbon system. This includes describing how annual, seasonal, and event-scale variability impacts air-sea CO2 flux and ocean acidification; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts. Sustained investments in the OA mooring network maintain long-term time series of OA variability and change, allow the PMEL Carbon Group and partners to provide analyses and comparisons of patterns and trends across the network, and make these mooring data available to the public and the broader scientific community.
The main hypothesis that motivates this mooring network is that the range of natural variability as well as the rates and magnitude of acidification will vary across time, space, and depth as a consequence of local and regional geochemical, hydrological, and biological mechanisms. Similar to the iconic Mauna Loa atmospheric CO2 time series, the “ocean observatories” in the NOAA OA/CO2 mooring network gain importance with time as they, in this case, begin to distinguish ocean carbon uptake and ocean acidification from the large natural temporal variability in the marine environment. The main objective of the NOAA OA/CO2 mooring network is to quantify temporal variability in the ocean carbon system. This includes describing how annual, seasonal, and event-scale variability impacts CO2 flux and OA; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.
The goal of this component of the project is to continue the mooring and ship-based monitoring of the Ocean Acidification-impacted carbonate chemistry of US Pacific coastal waters. This objective will be accomplished by: 1) continued operation of the Oregon Ocean Acidification Mooring Program, including deployment and maintenance of the surface moorings at the established Ocean Acidification (OA) node at NH10 with surface MAPCO2 systems, nearbottom moorings with SAMI-CO2 and SAMI-pH systems at the NH10 site and the shelfbreak in the early stages of the project, followed by a relocation (following validation exercises, see #3) of these assets to a more biologically productive site to the south; 2) measurement support of the West Coast Ocean Acidification Cruise in 2016; and 3) a validation program for moored measurements off the Oregon Coast. The final component will include a parallel deployment of the NOAA-OAP moored assets at NH-10 for 6-12 months following establishment of the OOI node there to ensure consistency between the OAP and OOI platforms, as well as continued opportunistic sample collection for archiving and analyses in Hales; lab at OSU.
Working with the Carbon Group at NOAA’s Pacific Marine Environmental Lab, we propose to continue the now 4-year time series of real-time, high-frequency measurements of critical core OA parameters on the northern Washington shelf, including regular collection of validation samples. Specifically APL-UW will continue to maintain a heavily-instrumented surface mooring (Cha’ba) providing core OA and support parameters 13 miles WNW of La Push, WA, within the Olympic Coast National Marine Sanctuary, just shoreward and south of the Juan de Fuca Eddy---a known harmful algae bloom (HAB) source (Trainer et al., 2009; Hickey et al., 2013). Cha’ba currently houses a MAPCO2 system and many auxiliary sensors including two pH sensors, several CTDs, two oxygen sensors, an ADCP, and a fluorometer/turbidity sensor. Because of budget limitations, lack of ship time, and possessing only one surface mooring, we are only able to deploy the Cha’ba system for 6-8 mo/yr, typically from March-April through September-October. A LOI is attached to this workplan that would allow for continuous 12 mo/yr deployments in order to bring this to the full requirements of NOAA OAP. Cha’ba’s location, in an upwelling zone and near the source waters to Puget Sound via the Strait of Juan de Fuca, offers key insights. While Cha'ba records surface air and seawater conditions with some depth resolution, NANOOS also supports a subsurface profiling mooring 400m away from Cha''ba, measuring full water-column properties below 20m, soon to be instrumented (US IOOS funding) with a real-time HAB detection system, pH sensor and profiling CTD offering broader context and insights on biological responses. Synergies between OA and HAB toxicity have been suggested (Sun et al., 2011). Continuation of the MAPCO2 effort on Cha''ba with these ancillary data will facilitate analysis to further develop our understanding of shelf processes important to OA variability, prediction, and biological responses.
This project will deploy two interdisciplinary moorings (CCE1 and CCE2) in the southern California Current System, a key coastal upwelling ecosystem along the west coast of North America. The study region forms the dominant spawning habitat for most of the biomass of small pelagic fishes in the entire California Current System, is important for wild harvest of diverse marine invertebrates and fishes, plays a significant role in the ocean carbon budget for the west coast, and is in close proximity to the Channel Islands National Marine Sanctuary. The offshore CCE1 mooring is located in the core flow of the California Current itself, and represents a key source of horizontal transport of nutrients, dissolved gases, and organisms from higher latitudes. It also represents the offshore atmosphere-ocean gas exchange that occurs over a large area and influences the carbon budget of this Eastern Boundary Current. The CCE2 mooring is located near Pt. Conception, one of the major upwelling centers off the west coast. This is a site of strong, episodic upwelling events that lead to marked increases in pCO2, declines in pH and dissolved oxygen, and intrusion of waters unfavorable to precipitation of calcium carbonate by some shell-bearing marine organisms. The proposed work will regularly deploy and service taut line, bottom-anchored moorings at the two mooring sites, with sensors designed to measure all core carbonate system variables specified by the PMEL OA Monitoring Network. The data will be validated with shipboard measurements and rigorous QC procedures, and made freely available via Iridium satellite telemetry. Complementary measurements made by partners in this region include Spray glider-based assessments of calcium carbonate saturation state, CalCOFI shipboard hydrographic and plankton food web measurements, process studies conducted by the CCE-LTER (Long Term Ecological Research) site, and a new experimental Ocean Acidification facility.
PI: Uwe Send