OAP PRojects IN CORAL REEF ECOSYSTEMS


Regional Vulnerability Assessment in the Hawaiian Archipelago

Regional Vulnerability Assessment in the Hawaiian Archipelago

Chris Sabine - University of Hawai’i at Manoa

Assessing Current and Future Ocean Acidification and Climate Vulnerabilities Along the Hawaiian Archipelago

Why we care
The Insular Pacific-Hawaiian Large Marine Ecosystem (IPH-LME) Complex provides critical benthic and oceanographic habitats for important fisheries and protected resources. A critical missing piece in assessing vulnerability in the Hawaiian Islands to ocean change is understanding the variability of ocean properties and ocean acidification in space and time. Coral reef managers are particularly challenged with sustaining the ecosystem functions and services under changing environmental and human impacts.

What we are doing
This project takes a modeling approach to link the state of the ecosystem with societal outcomes to assess risk vulnerability in the IPH-LME. Researchers will combine state-of-the-art climate, regional, and coral reef ecosystem models with satellite assessments of ocean acidification. Results will provide robust projections of ocean acidification-related stress across the IPH-LME for the next 5 decades (2020-2070. Societal data will be collected through interviews, workshops, and community surveys to expand the number of relationships modeled. Vulnerability of the Hawaiian Islands to the projected ocean acidification-related stress will be evaluated using relationships between ecological and social state components. Resource managers will evaluate tradeoffs between different management practices and climate futures to determine which interventions would be most effective in supporting ecosystem integrity while enhancing societal wellbeing in the face of ocean acidification.

Benefits of our work
Collaboration between scientists, managers, non-governmental organizations, and resource users will help ensure that socio-economic and biophysical processes are both considered when evaluating consequences of policy decisions and climate projections. This transdisciplinary approach provides opportunities to build relationships among the project stakeholders. This project directly supports the Hawai‘i Division of Aquatic Resources (DAR) in its efforts to develop vulnerability analyses and a state action plan for ocean acidification to build adaptation and resilience in communities affected by ocean acidification. The social vulnerability analysis method developed under this project will have broad applicability

Thursday, March 10, 2022

PMEL Ocean Acidification Mooring Test-beds and Sensor Development: Evaluating and Expanding New Carbon Technologies to Subsurface Habitats

Adrienne Sutton - NOAA Pacific Marine Environmental Laboratory

Developing and expanding sensors to improve ocean acidification monitoring

Why we care:
Enhancing our ability to measure water chemistry with the best technology available is essential to understand and track where and how ocean acidification changes in marine ecosystems. The NOAA Pacific Marine Environmental Laboratory (PMEL) Carbon Group continuously augments, develops, and evaluates sensors on moorings to collect information about natural variability in inorganic carbon chemistry over daily to inter-annual cycles. This project will identify, develop, and implement the best technology to support the existing National Ocean Acidification Observing Network (NOA-ON) buoy network and increase coverage of ocean acidification time series observations.


What we are doing:
The three main project activities include: 1) compile autonomous profile data at the Chába site and apply to biological exposure research; 2) test prototype total alkalinity (TA) sensors at the coral reef test-beds at Kaneohe Bay, Hawaii (CRIMP2 buoy) and Florida Keys (Cheeca Rocks buoy); and 3) continue development of a pCO2-DIC sensor based on the need to improve data return of two carbon parameters from the NOA-ON buoys. These sensors measure parts of the carbonate system, the ocean’s buffering system.

Benefits of our work:
This project supports the main goals of the NOA-ON by quantifying temporal variability in the ocean carbon system and making these high-quality time series available to other scientists and the public. Specific benefits provided to stakeholders include: 1) improved understanding of the range of subsurface ocean acidification conditions in two U.S. coral systems; 2) improved understanding of annual, seasonal, and event-scale variability of subsurface ocean acidification conditions and the potential impact to marine organisms; and 3) improved access to high-quality, high-frequency subsurface data to inform biological research and validation of ocean biogeochemical models and coastal forecasts.

Thursday, March 10, 2022
Categories: Projects

MAPCO2 Buoys at NCRMP CLASS III Sites in US Coral Reefs

Derek Manzello, NOAA Coral Reef Conservation Program

The long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification (OA) on coral ecosystems over time. This effort addresses NOAA’s Ocean Acidification Program (OAP) requirements for Monitoring of Ocean Chemistry by building and maintaining the coral reef portion of the OA monitoring network. This supports funding shortfalls associated with the NCRMP Class III MAPCO2 buoys at Cheeca Rocks and Kaneohoe Bay. Furthermore, this provides resources for the procurement of a new MAPCO2 buoy slated for deployment in Fagatele Bay, American Samoa in FY18, to establish the 2nd of three planned NCRMP Class III sites in the U.S. Pacific.

Tuesday, May 23, 2017
Categories: Projects
RSS