OAP Projects in the GULF OF ALASKA


Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

David Whitall - NOAA National Centers for Coastal Ocean Science

Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety

Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety. 

What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.

Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.


Wednesday, August 31, 2022

Assessing Ocean Acidification in Alaska Fishery Zones

Jessica Cross - Pacific Marine Environmental Laboratory

Sustained Observations of Ocean Acidification in Alaska Coastal Seas

Why we care
Coastal regions around Alaska experience some of the most rapid and extensive progressions of ocean acidification (OA) in the United States. Assessments indicate that Alaska coastal communities have a varying degree of vulnerability to OA ranging from moderate to severe. Economically vital fishing regions are the most vulnerable. Sustained monitoring is critical to track the extent and impact of ocean acidification in habitats that are home to sensitive species such as red king crab in the Bering Sea.

What we are doing
This project “rethinks” the coastal Alaskan OA monitoring effort (initiated in 2015) by sampling Alaska waters directly through the annual population survey program of the Alaska Fisheries Science Center (AFSC). This new vision doubles the spatial footprint of Alaska OA observations, increases the time resolution of these observations, and complements shipboard surveys in Alaska. Carbonate chemistry samples will be combined with fisheries population surveys to assess OA in the habitats of keystone organisms in the Bering Sea and Gulf of Alaska. 

Benefits of our work
This project enhances our understanding of how the accumulation of anthropogenic carbon dioxide affects the seasonal progression of carbonate carbonate chemistry variables in the Gulf of Alaska. The observations can also be used to validate new OA models developed for the Gulf of Alaska and Bering Sea. Additionally, it can be applied to bioeconomic forecast models of crab and walleye pollock providing insight on how to adapt and build resilience to impacted industries and communities.


Wednesday, August 31, 2022
RSS