OAP Projects in the GULF OF ALASKA


Surveying the state of ocean acidification along the U.S. West Coast

Surveying the state of ocean acidification along the U.S. West Coast

Richard Feely - Pacific Marine Environmental Laboratory

PMEL Sustained Ocean Acidification Biogeochemical and Ecological Survey Observations

Why we care
U.S. West coast-wide hydrographic surveys have been conducted intermittently from 2007 to 2017, providing evidence for the geographic extent and severity of ocean acidification in the continental shelf ecosystem. Scientists on the NOAA West Coast Ocean Acidification (WCOA) discovered that the combined effects of anthropogenic and biologically-derived carbon dioxide resulted in significant biological impacts for oyster larvae and pteropods, which are small, ecologically important mollusks for the food web. 

What we are doing
This project executes a large-scale survey of ocean acidification carbonate chemistry in the California Current System and continues processing data and publishing scientific papers based on 2016 and 2017 surveys findings. This survey determines the spatial distributions of temperature, salinity, pH, dissolved inorganic carbon, total alkalinity, oxygen, nutrients, and biological parameters along the west coast of North America. Survey results will provide the basis for accurate assessments of changing ocean chemistry in the following areas: 1) spatial variability; 2) extent and causes of long-term changes in carbonate system parameters and their impacts on calcifying (shell-building) organisms; and 3) empirical relationships for obtaining high-resolution information on ocean acidification collected on moorings. 

Benefits of our work
This project links the combined stressors of increased temperature, acidification, and hypoxia (low oxygen) with effects on marine organisms in the region and identifies spatial variability of acidifying conditions during the spring/summer upwelling season. In addition to scientific partners, this project engages a NOAA Teacher At Sea (TAS) fellow on the cruise to help develop outreach and education on West Coast ocean acidification.


Wednesday, August 31, 2022
Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Simone Alin - Pacific Marine Environmental Laboratory

PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)

Why we care
Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.


What we are doing 
The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection. 

Benefits of our work
This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.


Wednesday, August 31, 2022

Turning the headlights on 'high': Improving an ocean acidification observation system in support of Pacific coast shellfish growers

Jan Newton, University of Washington

Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.

Wednesday, January 25, 2017
Categories: Projects

Integrated Modeling of Ocean Acidification and Hypoxia to Support Ecosystem Prediction and Environmental Management in the California Current System

James McWilliams, UCLA/IGPP

The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition.  The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales.  Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.

The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.

Wednesday, January 25, 2017
Categories: Projects

Multi-Scale Prediction of California Current Carbonate System Dynamics

Burke Hales, Oregon State University

The California Current is a dynamic eastern boundary system that spans the Northeast Pacific from Canada to Baja California, Mexico. Upwelling of cold, nutrient rich water drives multi trophic level productivity throughout much of the domain, but also results in naturally acidic on-shelf waters on regional scales. In addition, anthropogenic CO2 on basin to global scales, and local inputs by eutrophication, fresh water inputs, and local respiration or carbon assimilation result in multiscale and context-specific perturbations to the carbonate system. Thus, to understand, manage, or mitigate the effect of ocean acidification on ocean ecosystems, we need to quantify a suite of carbonate system parameters along the Pacific Coast in a mechanistic, spatially explicit, and temporally dynamic fashion.

We propose to embed an improved semi-analytical carbonate-chemistry prediction model within a dynamic classification of pelagic seascapes derived from satellite remotely sensed variables, including, but not limited to, phytoplankton standing stock (chl-a), SST, and wind stress. We will produce synoptic time series and nowcasts of surface TCO2, TALK, pH and Ω that will facilitate regional comparisons of interannual trends in OA parameters. We will include metrics of model and spatiotemporal uncertainty to better inform management decisions. These maps will be validated with the wealth of multi-parameter OA data generated from recent NOAA-supported field-observational efforts, from coastal moorings, West-coast OA cruises, and shore-based Burke-o-Lators. Statistical analyses will quantify spatially explicit trends across OA parameters, and local deviations from seascape-based predictions will disentangle basin-scale oceanic vs. local drivers of the carbonate system. Maps will be served in near real time on IOOS data portals. Time series and maps will inform marine ecosystem management and provide metrics of ocean health for National Marine Sanctuary condition reports.

Wednesday, November 16, 2016
Categories: Projects
RSS
123