OAP Projects in the GULF OF ALASKA


Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

David Whitall - NOAA National Centers for Coastal Ocean Science

Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety

Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety. 

What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.

Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.


Wednesday, August 31, 2022

Assessing vulnerability of the Atlantic Sea Scallop social-ecological system in the northeast waters of the US

Samantha Siedlecki (University of Connecticut), Lisa Colburn (NOAA Northeast Fisheries Science Center), Shannon Meseck (NOAA Northeast Fisheries Science Center)

Of the fisheries made up of calcifiers in the Northeast United States, the Atlantic sea scallop fishery is worth more than $500 million per year, is the second highest fisheries revenue in the United States, and the largest wild scallop fishery in the world. The vulnerability and resilience of fishing communities to the effects of warming and Ocean Acidification (OA) on Northeast species is dependent on their adaptive capacity in relation to both social and environmental exposure and sensitivity factors. Communities that harvest a diversity of species may adapt more easily than communities that specialize in one or a few species. The regional contribution of sea scallop to total regional landed value has steadily increased over recent decades as has fishing community dependence on it as a source of revenue. Prior work projecting impacts to scallops in the region found that sea scallop biomass may decline by more than 50% by the end of the century with a large impact on the fishery (Cooley et al. 2015; Rheuban et al. 2018), but new tools and lab results are available for this proposed work that may alter this assessment. The team is working the hypothesis that a spatially- explicit regional projection of changes relative to sea scallop fishing zones can inform fishery management and allow communities that rely on Atlantic sea scallops to plan and become more resilient to future change. This work will develop a recommendation to management to assist scallop industry stakeholders and managers with changes in the fishery that result from projected OA and temperature changes. 
Monday, December 21, 2020

Optimizing Ocean Acidification Observations for Model Parameterization in the Coupled Slope Water System of the U.S. Northeast Large Marine Ecosystem

Grace Saba, Rutgers University

The U.S. Northeast Shelf Large Marine Ecosystem, supports some of the nation’s most economically valuable coastal fisheries, yet most of this revenue comes from shellfish that are sensitive to ocean acidification (OA). Furthermore, the weakly buffered northern region of this area is expected to have greater susceptibility to OA. Existing OA observations in the NES do not sample at the time, space, and depth scales needed to capture the physical, biological, and chemical processes occurring in this dynamic coastal shelf region. Specific to inorganic carbon and OA, the data available in the region has not been leveraged to conduct a comprehensive regional-scale analysis that would increase the ability to understand and model seasonal-scale, spatial-scale, and subsurface carbonate chemistry dynamics, variability, and drivers in the NES. This project optimizes the NES OA observation network encompassing the Mid-Atlantic and Gulf of Maine regions by adding seasonal deployments of underwater gliders equipped with transformative, newly developed and tested deep ISFET-based pH sensors and additional sensors (measuring temperature, salinity for total alkalinity and aragonite saturation [ΩArag] estimation, oxygen, and chlorophyll), optimizing existing regional sampling to enhance carbonate chemistry measurements in several key locations, and compiling and integrating existing OA assets. The researchers will apply these data to an existing NES ocean ecosystem/biogeochemical (BGC) model that resolves carbonate chemistry and its variability. 


Tuesday, March 3, 2020

Assessment of the Observing Network to Identify Processes Relevant to the Predictability of the Coastal Ocean of the Northeast on Centennial Time Scales

Samantha Siedlecki, University of Connecticut

Over the past 15 years, waters in the Gulf of Maine have taken up
CO2at a rate significantly slower than that observed in the open oceans due to a combination of
the extreme warming experienced in the region and an increased presence of well-buffered Gulf
Stream water. The reduced uptake of CO2 by the shelves could
also alter local acidification rate, which differ from the global rates. The intrusion of
anthropogenic CO2is not the only mechanism that can reduce Ωarag within coastal surface waters.
Local processes like freshwater delivery, eutrophication, water column metabolism, and
sediment interactions that drive variability on regional scales can also modify spatial variability
in Ωarag. Global projections cannot resolve these local processes with resolution of a degree
or more. Some high-resolution global projections have been developed which perform well in
some coastal settings . However, these simulations do not include regional
biogeochemical processes described above which can amplify or dampen these global changes,
particularly in coastal shelf regions. Our hypothesis is that a regionally downscaled projection
for the east coast of the US can be used to evaluate the ability of the existing observational
network to detect changes in ocean acidification relevant stressors for scallops and propose a
process-based strategy for the network moving forward.

Tuesday, March 3, 2020
Categories: Projects

Ocean and Coastal Acidification Thresholds from Long Island Sound to the Nova Scotian Shelf

Ruairidh Morrison, NERACOOS

How will nearshore and coastal ecosystems respond to ocean and coastal acidification in the Northeast? How will these changes affect human communities? An absence of actionable information and understanding of the dynamic nature of coastal acidification is a major challenge to Northeast seafood industry, resource managers, and coastal policymakers. This project will expand the existing Northeast Coastal Ocean Forecast System to develop actionable guidance for coastal water quality and marine resource managers through workshops and direct engagement. Workshops and focus groups will be held to determine information needs, decision scenarios, modeling priorities, and options for delivering actionable information for three specific users: (1) water quality managers and monitoring systems, (2) oyster growers, and (3) the wild harvest shellfishing industry. The research will focus on advancing ocean acidification detection and warning systems that take into account other environmental stressors in Northeast coastal waters.
Tuesday, October 2, 2018
RSS
1234