Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety
Why we care Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety.
What we are doing This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.
Benefits of our work Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.
The U.S. Northeast Shelf Large Marine Ecosystem, supports some of the nation’s most economically valuable coastal fisheries, yet most of this revenue comes from shellfish that are sensitive to ocean acidification (OA). Furthermore, the weakly buffered northern region of this area is expected to have greater susceptibility to OA. Existing OA observations in the NES do not sample at the time, space, and depth scales needed to capture the physical, biological, and chemical processes occurring in this dynamic coastal shelf region. Specific to inorganic carbon and OA, the data available in the region has not been leveraged to conduct a comprehensive regional-scale analysis that would increase the ability to understand and model seasonal-scale, spatial-scale, and subsurface carbonate chemistry dynamics, variability, and drivers in the NES. This project optimizes the NES OA observation network encompassing the Mid-Atlantic and Gulf of Maine regions by adding seasonal deployments of underwater gliders equipped with transformative, newly developed and tested deep ISFET-based pH sensors and additional sensors (measuring temperature, salinity for total alkalinity and aragonite saturation [ΩArag] estimation, oxygen, and chlorophyll), optimizing existing regional sampling to enhance carbonate chemistry measurements in several key locations, and compiling and integrating existing OA assets. The researchers will apply these data to an existing NES ocean ecosystem/biogeochemical (BGC) model that resolves carbonate chemistry and its variability.
Over the past 15 years, waters in the Gulf of Maine have taken up CO2at a rate significantly slower than that observed in the open oceans due to a combination of the extreme warming experienced in the region and an increased presence of well-buffered Gulf Stream water. The reduced uptake of CO2 by the shelves could also alter local acidification rate, which differ from the global rates. The intrusion of anthropogenic CO2is not the only mechanism that can reduce Ωarag within coastal surface waters. Local processes like freshwater delivery, eutrophication, water column metabolism, and sediment interactions that drive variability on regional scales can also modify spatial variability in Ωarag. Global projections cannot resolve these local processes with resolution of a degree or more. Some high-resolution global projections have been developed which perform well in some coastal settings . However, these simulations do not include regional biogeochemical processes described above which can amplify or dampen these global changes, particularly in coastal shelf regions. Our hypothesis is that a regionally downscaled projection for the east coast of the US can be used to evaluate the ability of the existing observational network to detect changes in ocean acidification relevant stressors for scallops and propose a process-based strategy for the network moving forward.