OAP Projects in the gulf of mexico


Technology Refresh: Accelerating OA Sensor Development

Chris Meinig - NOAA Pacific Marine Environmental Laboratory

Accelerating Ocean Acidification Sensor Development

Why we care
After nearly a decade, the NOAA Ocean Acidification Observing Network (NOA-ON) has reached the maturity level where a sustained effort to refresh its core technology, the Moored Autonomous pCO2 (MAPCO2), is necessary to maintain the current monitoring level. There is also the pressing need to develop technology to both improve the accuracy and reliability of the measurement of a second carbonate system parameter (dissolved inorganic carbon, DIC) in order to better measure and understand ocean acidification (OA). 

What we are doing
We will develop a modestly-priced, mass-producible, climate-quality surface ocean system that will measure 2 key parameters (pCO2, DIC) of the oceans carbonate (buffering) system. The system will be deployable on a variety of autonomous platforms and vehicles to meet the needs of both the ocean acidification and surface ocean carbon dioxide international observing networks. 

Benefits of our work
The NOA-ON network can sustain these important observations while adding the ability to autonomously observe the ocean with a measurement quality sufficient to detect long-term changes in ocean acidification. This is a priority task for NOA-ON, the Global Ocean Acidification Observing Network (GOA-ON) and others that cannot be accomplished with current technology. The pCO2-DIC sensor developed under this project will contribute towards better assessment of the vulnerability of U.S. waters to ocean acidification by providing access to real time information about the variability of OA, meeting the needs of several stakeholders in the marine resource community.


Sunday, February 12, 2023

Understanding biodiversity in the Gulf of Mexico using eDNA

Luke Thompson - Mississippi State University

Assessing ecosystem responses of Gulf of Mexico coastal communities to ocean acidification using environmental DNA

Why we care 
Recent efforts to monitor ocean acidification in the Gulf of Mexico via the Gulf of Mexico Ecosystems and Carbon Cycle (GOMECC) cruises have revealed spatial differences in ocean acidification. While we know that ocean acidification negatively impacts many species and exacerbates the effects of oxygen limitation and harmful algal blooms, there is little work to monitor or predict the effects of ocean acidification on biodiversity. This project employs cutting-edge technology using environmental DNA to assess biodiversity in different conditions in the Gulf of Mexico region.

What we are doing
Every organism sheds DNA. This project analyzes environmental DNA (eDNA), which is free-floating or microscopic DNA found in seawater, collected during the 4th GOMECC cruise, to identify biodiversity of bacteria, plankton, and fish in the Gulf of Mexico. eDNA will be compared to ocean properties to draw conclusions about drivers of biodiversity. 

Benefits of our work
Links between eDNA, ocean acidification, and other ocean properties will provide a deeper understanding of environmental drivers of biodiversity. These relationships can inform predictions of biodiversity patterns and guide the management of key habitats in the Gulf of Mexico, and help us adapt to changing ocean conditions.


Tuesday, June 14, 2022
RSS