Text/HTML

Text/HTML


OAP Projects in the NORTHEAST U.S.


CCE-EasyDNNNews

Ocean and Coastal Acidification Thresholds from Long Island Sound to the Nova Scotian Shelf

Ruairidh Morrison, NERACOOS

How will nearshore and coastal ecosystems respond to ocean and coastal acidification in the Northeast? How will these changes affect human communities? An absence of actionable information and understanding of the dynamic nature of coastal acidification is a major challenge to Northeast seafood industry, resource managers, and coastal policymakers. This project will expand the existing Northeast Coastal Ocean Forecast System to develop actionable guidance for coastal water quality and marine resource managers through workshops and direct engagement. Workshops and focus groups will be held to determine information needs, decision scenarios, modeling priorities, and options for delivering actionable information for three specific users: (1) water quality managers and monitoring systems, (2) oyster growers, and (3) the wild harvest shellfishing industry. The research will focus on advancing ocean acidification detection and warning systems that take into account other environmental stressors in Northeast coastal waters.
Tuesday, October 2, 2018

Low pH in Coastal Waters of the Gulf of Maine: A Data Synthesis-Driven Investigation of Probable Sources, Patterns and Processes Involved

David W. Townsend, University of Maine

Coastal Maine supports valuable lobster, clam, oyster and other shellfish industries that comprise >90% of Maine’s record $616M landed value last year. Earlier monitoring efforts in Maine and New Hampshire have documented periods of unusually acidic conditions in subsurface waters of Maine’s estuaries, which may be driven by episodic influxes of waters from the Gulf’s nutrient-rich, highly productive coastal current system. Sources of acidity to the estuaries also include the atmosphere, freshwater fluxes, and local eutrophication processes, all modulated by variability imparted by a number of processes.This project is a data synthesis effort to look at long-term trends in water quality data to identify the key drivers of acidification in this area. Extensive data sets dating back to the 1980s (including carbonate system, hydrography, oxygen, nutrients, and other environmental variables) will be assembled, subjected to QA/QC, and analyzed to assess acidification events in the context of landward, seaward and direct atmospheric sources, as may be related to processes operating on tidal to decadal timescales. Such analyses are requisite for any future vulnerability assessments of fishery-dependent communities in Maine and New Hampshire to the effects of coastal acidification.

Friday, December 22, 2017

A Strategy for Ocean and Coastal Acidification (OCA) Education and Citizen Science Monitoring in the Northeast

Beth Turner

This project will cross-calibrate citizen science monitoring protocols for ocean acidification among independent organizations in the Northeast by developing a replicable citizen science monitoring training program. This will be accomplished by providing trainings and materials specific for volunteer and citizen science audiences through a series of regional workshops. The project team will (1) develop the first replicable citizen science monitoring program in accordance with recently developed EPA guidance document, Guidelines for Measuring Changes in Seawater pH and Associated Carbonate Chemistry in Coastal Environments of the Eastern United States, (2) provide in-person technical trainings and educational materials through an initial series of three regional workshops in Maine, Massachusetts and Connecticut and (3) support the successful use of citizen science participation in research and management by building on the Northeast Coastal Acidification Network’s extensive capacity and stakeholder network.

Friday, April 28, 2017
Categories: Projects

Tracking Ocean Alkalinity using New Carbon Measurement Technologies (TAACT)

Joe Salisbury

This project will expand the quantity and quality of ocean acidification (OA) monitoring across Northeastern U.S. coastal waters. The new OA data and incorporation of the world’s first commercial total alkalinity (TA) sensor into our regional observing system (NERACOOS) are designed to supply needed baseline information in support of a healthy and sustainable shellfish industry, and to aid in assessments and projections for wild fisheries. In working with partners to develop this proposal, clear concerns were brought forward regarding the potential impacts of increasing ocean acidity that extend from nearshore hatcheries and aquaculture to broader Gulf of Maine finfish and shellfish industries and their management. Stakeholder input and needs shaped the project scope such that both nearshore and offshore users will be served by TA sensor deployments on partner platforms, including time series data collection at an oyster aquaculture site, on the NOAA Ship of Opportunity AX-2 line, and on federal and State of Maine regional fish trawl surveys. In all, five different deployment platforms will be used to enhance ocean acidification monitoring within the Northeast Coastal Acidification Network (NE-CAN) with significant improvement in temporal and spatial coverage.

 Adding the all-new TA measurement capability to the regional observation network will provide more accurate, certain, and reliable OA monitoring, and an important project objective is to demonstrate and relay this information to regional partners. Data products to be developed from the multi-year measurements include nearshore and offshore baseline OA seasonal time series as well as threshold indices tied to acidification impacts on larval production at the Mook Sea Farm oyster hatchery. An outreach and technical supervision component will include the transfer of carbonate system observing technologies to our partners and to the broader fishing industry, resource management, and science communities. NERACOOS will provide data management and communication (DMAC) services and work towards implementing these technological advances into the IOOS network.

Wednesday, January 25, 2017
Categories: Projects

Interactions between ocean acidification and eutrophication in estuaries: Modeling opportunities and limitations for shellfish restoration

Jeremy Testa, University of Maryland Center for Environmental Science (UMCES) Chesapeake Biological Laboratory

The objective of this project is to make significant strides in bridging the gap between scientific knowledge and current management needs by integrating existing biogeochemical model frameworks, field measurements, and experimental work toward the goals of (1) delineating atmospheric and eutrophication drivers of Chesapeake Bay acidification and improve our understanding of estuarine carbonate chemistry, (2) developing a spatially explicit framework to identify shellfish restoration areas most and least prone to acidification impacts, and (3) better understanding feedbacks associated with future environmental conditions and shellfish restoration goals estuary-wide and within a model tributary. This effort includes (1) a field campaign to make the first comprehensive study of the spatial and temporal variability in the carbonate system in Chesapeake Bay, (2) experiments to quantify both carbonate and nutrient exchange between intact oyster reefs and the surrounding water while measuring response of these fluxes to reef structure and acidification, and (3) an advancement in numerical modeling tools to simultaneously simulate the dynamics of eutrophication, hypoxia, carbonate chemistry, and oyster reef growth and interaction with the water-column under present and future conditions.

Wednesday, January 25, 2017
Categories: Projects
RSS
123

CCE Map