Coastal acidification and its associated co-stressors present a serious and credible threat to the success of both oyster aquaculture and restoration in the Chesapeake Bay. Recent research provides a clearer understanding of the physiological sensitivity of different economically and culturally valuable shellfish species to ocean acidification (OA), but we still lack a basic understanding of how vulnerability differs across the range of shellfish-reliant stakeholders, specifically participants in oyster aquaculture, the growers, watermen and coastal restoration managers. This basic knowledge gap motivates this work, which aims to: (1) assess the vulnerability of the oyster aquaculture industry and oyster restoration to OA and other co-stressors, and (2) produce the information required by regional communities to aid in adaptation to these stressors. In achieving these goals, we will better understand which shellfish stakeholders will be able to successfully adapt, which will seek alternative livelihoods, and what specifically causes the difference between these two disparate outcomes.
Acidification in brackish estuarine environments, such as the Chesapeake Bay, is intensified by coastal inputs such as runoff, atmospheric pollution and freshwater sources. The Chesapeake Bay is home to commercial shellfish hatcheries that supply seed that is sold to and planted in hundreds of shellfish farms within the Chesapeake. A great deal of research has been dedicated to understanding the impact of acidification on shellfish, and has shown even greater impacts to shellfish growth and survival in lower salinity and nutrient-rich environments. The shellfish industry relies on consistent hatchery production to sustain and expand operations that could greatly benefit from regional OA forecasts and metrics. This project will synthesize recent CO2 system observations with long-term water quality parameters and combine observations an existing baywide, high-resolution 3D model. The proposed research will develop forecasts of acidification and develop acidification metrics tailored to support decision-making needs of commercial shellfish hatchery and nursery operators.
NOAA academic partners Salisbury and Cai will organize and lead a 34-days cruise covering 12 transects of the U.S. and Canadian coast oceans from Nova Scotia in the north to the Gulf of Maine, Long Island Sound, Mid-Atlantic and Southern Bight regions, ending with a transect off of mid Florida. This cruise will serve as a synoptic characterization of the marine carbonate parameters of the coastal ocean with increased coverage in nearshore areas that have not surveyed in the previous cruises and subsurface dynamics that are not captured from using buoyed assets or ships of opportunity. The climate quality data from these cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and serves as a start of a long-term record of dynamics and processes controlling Ocean Acidification (OA) on the coastal shelves. To this end there is an increasing focus on these cruises to perform rate measurements (e.g. NPP/NEP/NEC) for validation measurements of autonomous assets and buoyed assets, for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.