Vulnerability of oyster aquaculture and restoration to ocean acidification and other co-stressors in the Chesapeake Bay

Marjy Friedrichs (Virginia Institute of Marine Science ), Emily Rivest (Virginia Institute of Marine Science ), David Wrathall (Oregon State University)

Coastal acidification and its associated co-stressors present a serious and credible threat to the success of both oyster aquaculture and restoration in the Chesapeake Bay. Recent research provides a clearer understanding of the physiological sensitivity of different economically and culturally valuable shellfish species to ocean acidification (OA), but we still lack a basic understanding of how vulnerability differs across the range of shellfish-reliant stakeholders, specifically participants in oyster aquaculture, the growers, watermen and coastal restoration managers. This basic knowledge gap motivates this work, which aims to: (1) assess the vulnerability of the oyster aquaculture industry and oyster restoration to OA and other co-stressors, and (2) produce the information required by regional communities to aid in adaptation to these stressors. In achieving these goals, we will better understand which shellfish stakeholders will be able to successfully adapt, which will seek alternative livelihoods, and what specifically causes the difference between these two disparate outcomes.

Monday, December 21, 2020

Can meadows of underwater eelgrass help mitigate the harmful effects of Ocean Acidification on Eastern oysters?

Emily Rivest, Virginia Institute of Marine Science

Submerged Aquatic Vegetation (SAV), such as eelgrass, could mitigate the harmful impacts of ocean acidification on Eastern oysters by reducing the acidity of waters where oysters grow. These underwater grasses take up carbon dioxide and release oxygen into coastal waters, reducing the exposure of marine organisms to increases in acidity conditions that slow or stop oyster growth and reproduction. Oysters, in turn, improve water clarity forseagrasses to thrive by filtering particles out of the water and allowing more sunlight to penetrate. This modeling project will identify the threshold of acidification beyond which the economically important Eastern oyster is negatively impacted and will evaluate the potential benefit of seagrasses in protecting oysters and the ecosystem services they provide. The modeling tool will also identify the acidification conditions in which seagrass restoration is most helpful and when the economic benefits of this restoration to Easter oyster production outweigh the costs. At the end of this project, the final model will be freely available as an online tool and will help scientists, managers and oyster growers assess the potential for both seagrass and oyster restoration.
Tuesday, October 2, 2018