Community Sampling and Ocean Acidification Observations in South-central Alaska
Why we care Southeast Alaska experiences ocean acidification at a faster rate than other regions due to its cold water temperatures and ocean current patterns. Indigenous communities rely on a healthy marine ecosystem and the culturally and economically important species that are impacted. This long-term community science monitoring program brings together scientists, aquaculturists, and seven Alaska Native communities to build capacity. This project brings awareness about the program, ocean acidification, and its impacts through multimedia.
What we are doing The CRRC created a video in partnership with Alutiiq Pride Shellfish Hatchery (APSH) to communicate the scientific findings of a long term Native Alaskan community science water quality program south-central Alaska. The goals of the video are educating and raising awareness of ocean acidification and the community science monitoring program to Alaskan Natives and communities the CRRC serves. The video delivers the main findings of the program, highlights the partners and points to current and future impacts to wild shellfish and traditional subsistence food in the Chugach region.
Benefits of our work This monitoring program serves as an example of co-producing science with indigenous communities that can be used nationwide. The video provides long-term water quality and ocean acidification monitoring data in a more meaningful storytelling format for coastal Alaska Native communities impacted by changing ocean conditions. By using different science communication techniques, such as through multimedia projects, the CRRC and APSH can reach more communities that may be interested in starting a water quality monitoring program in their local marine ecosystem.
Accelerating Ocean Acidification Sensor Development
Why we care After nearly a decade, the NOAA Ocean Acidification Observing Network (NOA-ON) has reached the maturity level where a sustained effort to refresh its core technology, the Moored Autonomous pCO2 (MAPCO2), is necessary to maintain the current monitoring level. There is also the pressing need to develop technology to both improve the accuracy and reliability of the measurement of a second carbonate system parameter (dissolved inorganic carbon, DIC) in order to better measure and understand ocean acidification (OA).
What we are doing We will develop a modestly-priced, mass-producible, climate-quality surface ocean system that will measure 2 key parameters (pCO2, DIC) of the oceans carbonate (buffering) system. The system will be deployable on a variety of autonomous platforms and vehicles to meet the needs of both the ocean acidification and surface ocean carbon dioxide international observing networks.
Benefits of our work The NOA-ON network can sustain these important observations while adding the ability to autonomously observe the ocean with a measurement quality sufficient to detect long-term changes in ocean acidification. This is a priority task for NOA-ON, the Global Ocean Acidification Observing Network (GOA-ON) and others that cannot be accomplished with current technology. The pCO2-DIC sensor developed under this project will contribute towards better assessment of the vulnerability of U.S. waters to ocean acidification by providing access to real time information about the variability of OA, meeting the needs of several stakeholders in the marine resource community.
Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety
Why we care Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety.
What we are doing This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.
Benefits of our work Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.
PMEL Sustained Ocean Acidification Biogeochemical and Ecological Survey Observations
Why we care U.S. West coast-wide hydrographic surveys have been conducted intermittently from 2007 to 2017, providing evidence for the geographic extent and severity of ocean acidification in the continental shelf ecosystem. Scientists on the NOAA West Coast Ocean Acidification (WCOA) discovered that the combined effects of anthropogenic and biologically-derived carbon dioxide resulted in significant biological impacts for oyster larvae and pteropods, which are small, ecologically important mollusks for the food web.
What we are doing This project executes a large-scale survey of ocean acidification carbonate chemistry in the California Current System and continues processing data and publishing scientific papers based on 2016 and 2017 surveys findings. This survey determines the spatial distributions of temperature, salinity, pH, dissolved inorganic carbon, total alkalinity, oxygen, nutrients, and biological parameters along the west coast of North America. Survey results will provide the basis for accurate assessments of changing ocean chemistry in the following areas: 1) spatial variability; 2) extent and causes of long-term changes in carbonate system parameters and their impacts on calcifying (shell-building) organisms; and 3) empirical relationships for obtaining high-resolution information on ocean acidification collected on moorings.
Benefits of our work This project links the combined stressors of increased temperature, acidification, and hypoxia (low oxygen) with effects on marine organisms in the region and identifies spatial variability of acidifying conditions during the spring/summer upwelling season. In addition to scientific partners, this project engages a NOAA Teacher At Sea (TAS) fellow on the cruise to help develop outreach and education on West Coast ocean acidification.
Sustained Observations of Ocean Acidification in Alaska Coastal Seas
Why we care Coastal regions around Alaska experience some of the most rapid and extensive progressions of ocean acidification (OA) in the United States. Assessments indicate that Alaska coastal communities have a varying degree of vulnerability to OA ranging from moderate to severe. Economically vital fishing regions are the most vulnerable. Sustained monitoring is critical to track the extent and impact of ocean acidification in habitats that are home to sensitive species such as red king crab in the Bering Sea.
What we are doing This project “rethinks” the coastal Alaskan OA monitoring effort (initiated in 2015) by sampling Alaska waters directly through the annual population survey program of the Alaska Fisheries Science Center (AFSC). This new vision doubles the spatial footprint of Alaska OA observations, increases the time resolution of these observations, and complements shipboard surveys in Alaska. Carbonate chemistry samples will be combined with fisheries population surveys to assess OA in the habitats of keystone organisms in the Bering Sea and Gulf of Alaska.
Benefits of our work This project enhances our understanding of how the accumulation of anthropogenic carbon dioxide affects the seasonal progression of carbonate carbonate chemistry variables in the Gulf of Alaska. The observations can also be used to validate new OA models developed for the Gulf of Alaska and Bering Sea. Additionally, it can be applied to bioeconomic forecast models of crab and walleye pollock providing insight on how to adapt and build resilience to impacted industries and communities.
Evaluation of OA impacts to plankton and fish distributions in the Gulf of Mexico during GOMECC-4 with a focus on HAB-interactions
Why we care Ocean change in the Gulf of Mexico, including acidification and eutrophication, can impact biodiversity and the flow of energy through ecosystems from microscopic phytoplankton to higher trophic levels like fish. These processes can impact the health of fisheries and coastal ecosystems. This project collects information to evaluate the links between ocean conditions and important species in the Gulf of Mexico.
What we are doing During the 4th Gulf of Mexico Ecosystem and Carbon Cruise (GOMECC-4), scientists collect samples of phytoplankton, zooplankton, and ichthyoplankton to characterize fish distribution and abundance, larval fish condition and diet, microplastic abundance, and harmful algal bloom species. These collections coincide with measurements of acidification, oxygen, and eutrophication to make connections between ocean chemistry and biology.
Benefits of our work This project will help characterize how changes in ocean conditions interact with biological processes like harmful algal bloom formation and ecosystem productivity that are important to local fisheries and stakeholders.
PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)
Why we care Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.
What we are doing The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection.
Benefits of our work This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.
Assessing ecosystem responses of Gulf of Mexico coastal communities to ocean acidification using environmental DNA
Why we care Recent efforts to monitor ocean acidification in the Gulf of Mexico via the Gulf of Mexico Ecosystems and Carbon Cycle (GOMECC) cruises have revealed spatial differences in ocean acidification. While we know that ocean acidification negatively impacts many species and exacerbates the effects of oxygen limitation and harmful algal blooms, there is little work to monitor or predict the effects of ocean acidification on biodiversity. This project employs cutting-edge technology using environmental DNA to assess biodiversity in different conditions in the Gulf of Mexico region.
What we are doing Every organism sheds DNA. This project analyzes environmental DNA (eDNA), which is free-floating or microscopic DNA found in seawater, collected during the 4th GOMECC cruise, to identify biodiversity of bacteria, plankton, and fish in the Gulf of Mexico. eDNA will be compared to ocean properties to draw conclusions about drivers of biodiversity.
Benefits of our work Links between eDNA, ocean acidification, and other ocean properties will provide a deeper understanding of environmental drivers of biodiversity. These relationships can inform predictions of biodiversity patterns and guide the management of key habitats in the Gulf of Mexico, and help us adapt to changing ocean conditions.
Ocean Acidification on a Crossroad: Enhanced Respiration, Upwelling, Increasing Atmospheric CO2, and their interactions in the northwestern Gulf of Mexico
Why we care In the coastal ocean, local drivers such as nutrient input and physical oceanographic changes impact the magnitude of short-term variations and long-term trends in ocean acidification. The Gulf of Mexico’s coral reefs and banks are ecologically sensitive to changing ocean chemistry. Decadal acidification has been observed in the Northwestern Gulf of Mexico, linked more strongly to biological production of carbon dioxide than uptake of human-emitted carbon dioxide. Whether the observed acidification in this region represents a short-term phenomenon or a long-term trend is unknown. This project maintains critical ocean acidification monitoring in a region with impacted habitats and species.
What we are doing This project will test the hypothesis that enhanced atmospheric carbon dioxide, nutrient input, and upwelling will cause the continental shelf-slope region in the Northwestern Gulf of Mexico to acidify faster than other tropical and subtropical seas. The research team will incorporate observations from new large-scale surveys into oceanographic and statistical models that predict variation in ocean acidification over space and time.
Benefits of our work The outcomes of this project will meet the long-term goal of optimizing ocean acidification monitoring in the Northwestern Gulf of Mexico and will document methodology that can be used in similar efforts in the future. This project will examine an area in the poorly understood Gulf of Mexico Large Marine Ecosystem, produce the first ever high-resolution dataset in surface and subsurface waters, and direct the future deployment of in-situ monitoring devices in this ecologically and economically important region.
Why we care Long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification (OA) on coral ecosystems over time. The NOAA Coral Reef Conservation Program (CRCP) brings together scientists across NOAA to conduct sustained coastal ocean observations of biological climate and socioeconomic indicators in 10 priority U.S. coral reef areas.
What we are doing This project will provide high-quality carbonate chemistry data at a newly established National Coral Reef Monitoring Plan (NCRMP) monitoring site in Fagatele Bay, American Samoa. Using an interdisciplinary approach, scientists will collect, process, analyze, and steward continuous ocean acidification data. Observations of the carbonate system, the ocean’s buffering system, will be collected via a Moored Autonomous pCO2 (MApCO2) buoy providing freely-available high-quality carbon dioxide data that can then be used by project collaborators and partners to further research.
Benefits of our work The outcomes generated from this monitoring project will advance our understanding of the carbon cycle of coral reefs in American Samoa and the impacts to coral ecosystems. Ocean acidification data will help elucidate the natural biogeochemical influences at reefs, and can be used to determine if the magnitude of acidification occurring in the open ocean is also occurring on coral reefs.
Why we care The Insular Pacific-Hawaiian Large Marine Ecosystem (IPH-LME) Complex provides critical benthic and oceanographic habitats for important fisheries and protected resources. A critical missing piece in assessing vulnerability in the Hawaiian Islands to ocean change is understanding the variability of ocean properties and ocean acidification in space and time. Coral reef managers are particularly challenged with sustaining the ecosystem functions and services under changing environmental and human impacts.
What we are doing This project takes a modeling approach to link the state of the ecosystem with societal outcomes to assess risk vulnerability in the IPH-LME. Researchers will combine state-of-the-art climate, regional, and coral reef ecosystem models with satellite assessments of ocean acidification. Results will provide robust projections of ocean acidification-related stress across the IPH-LME for the next 5 decades (2020-2070. Societal data will be collected through interviews, workshops, and community surveys to expand the number of relationships modeled. Vulnerability of the Hawaiian Islands to the projected ocean acidification-related stress will be evaluated using relationships between ecological and social state components. Resource managers will evaluate tradeoffs between different management practices and climate futures to determine which interventions would be most effective in supporting ecosystem integrity while enhancing societal wellbeing in the face of ocean acidification.
Benefits of our work Collaboration between scientists, managers, non-governmental organizations, and resource users will help ensure that socio-economic and biophysical processes are both considered when evaluating consequences of policy decisions and climate projections. This transdisciplinary approach provides opportunities to build relationships among the project stakeholders. This project directly supports the Hawai‘i Division of Aquatic Resources (DAR) in its efforts to develop vulnerability analyses and a state action plan for ocean acidification to build adaptation and resilience in communities affected by ocean acidification. The social vulnerability analysis method developed under this project will have broad applicability
Why we care Long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification on coral ecosystems over time.
What we are doing Incorporating an interdisciplinary approach, this project will collect, process, analyze, and steward continuous data measuring parts of ocean carbonate system, the ocean’s buffering system. Specifically, this project will include partial pressure of carbon dioxide, pH (measure of acidity), dissolved inorganic carbon (DIC) and total alkalinity to document seawater carbonate chemistry at a newly established climate monitoring site in Fagatele Bay, American Sāmoa.
Benefits of our work This work produces long-term, continuous, high-quality data of seawater carbonate chemistry needed to track where and how ocean chemistry is changing. The work will initially provide an increased understanding of the natural biogeochemical influences of reef carbon dioxide. In the future, this work will help determine if the magnitude of acidification occurring in the open ocean is also occurring at coral reefs. The buoy at this site will provide freely-available, high-quality carbon dioxide data people can use to better understand the carbon cycle of coral reefs in American Sāmoa and the impacts to coral ecosystems. This will be the only southern hemisphere Class III site in both the Atlantic and Pacific, spanning a large latitudinal gradient.
Why we care: Enhancing our ability to measure water chemistry with the best technology available is essential to understand and track where and how ocean acidification changes in marine ecosystems. The NOAA Pacific Marine Environmental Laboratory (PMEL) Carbon Group continuously augments, develops, and evaluates sensors on moorings to collect information about natural variability in inorganic carbon chemistry over daily to inter-annual cycles. This project will identify, develop, and implement the best technology to support the existing National Ocean Acidification Observing Network (NOA-ON) buoy network and increase coverage of ocean acidification time series observations.
What we are doing: The three main project activities include: 1) compile autonomous profile data at the Chába site and apply to biological exposure research; 2) test prototype total alkalinity (TA) sensors at the coral reef test-beds at Kaneohe Bay, Hawaii (CRIMP2 buoy) and Florida Keys (Cheeca Rocks buoy); and 3) continue development of a pCO2-DIC sensor based on the need to improve data return of two carbon parameters from the NOA-ON buoys. These sensors measure parts of the carbonate system, the ocean’s buffering system.
Benefits of our work: This project supports the main goals of the NOA-ON by quantifying temporal variability in the ocean carbon system and making these high-quality time series available to other scientists and the public. Specific benefits provided to stakeholders include: 1) improved understanding of the range of subsurface ocean acidification conditions in two U.S. coral systems; 2) improved understanding of annual, seasonal, and event-scale variability of subsurface ocean acidification conditions and the potential impact to marine organisms; and 3) improved access to high-quality, high-frequency subsurface data to inform biological research and validation of ocean biogeochemical models and coastal forecasts.
Acidification in brackish estuarine environments, such as the Chesapeake Bay, is intensified by coastal inputs such as runoff, atmospheric pollution and freshwater sources. The Chesapeake Bay is home to commercial shellfish hatcheries that supply seed that is sold to and planted in hundreds of shellfish farms within the Chesapeake. A great deal of research has been dedicated to understanding the impact of acidification on shellfish, and has shown even greater impacts to shellfish growth and survival in lower salinity and nutrient-rich environments. The shellfish industry relies on consistent hatchery production to sustain and expand operations that could greatly benefit from regional OA forecasts and metrics. This project will synthesize recent CO2 system observations with long-term water quality parameters and combine observations an existing baywide, high-resolution 3D model. The proposed research will develop forecasts of acidification and develop acidification metrics tailored to support decision-making needs of commercial shellfish hatchery and nursery operators.
Among the NOAA designated Large Marine Ecosystems, the Gulf of Mexico (GOM) remains poorly understood in terms of its current OA conditions, despite its ecological and economic significance. In the northwestern GOM (nwGOM), decadal acidification has been observed in the shelf-slope region, with metabolic production of CO2 contributing to a larger fraction of CO2 accumulation than uptake of anthropogenic CO2, and the observed rate of acidification is significantly greater than that in other tropical and subtropical areas. Unfortunately, whether the observed OA in this region represents a short-term phenomenon or a long-term trend is unknown. It is hypothesized that increasing atmospheric CO2, increasing terrestrial nutrient export due to an enhanced hydrological cycle, and enhanced upwelling due to climate change will cause the continental shelf-slope region in the nwGOM to acidify faster than other tropical and
subtropical seas. In order to test this hypothesis wave gliders, in -stiu sensor along withe underway measurements from research vessels will measure carbonated chemistry in in surface and shallow waters. Modeling will be used tp integrate the chemical signals into the models to hindcast/predict spatia; and temporal variation of the OA signal for the the optimization of monitoring design and implementation.
The U.S. Northeast Shelf Large Marine Ecosystem, supports some of the nation’s most economically valuable coastal fisheries, yet most of this revenue comes from shellfish that are sensitive to ocean acidification (OA). Furthermore, the weakly buffered northern region of this area is expected to have greater susceptibility to OA. Existing OA observations in the NES do not sample at the time, space, and depth scales needed to capture the physical, biological, and chemical processes occurring in this dynamic coastal shelf region. Specific to inorganic carbon and OA, the data available in the region has not been leveraged to conduct a comprehensive regional-scale analysis that would increase the ability to understand and model seasonal-scale, spatial-scale, and subsurface carbonate chemistry dynamics, variability, and drivers in the NES. This project optimizes the NES OA observation network encompassing the Mid-Atlantic and Gulf of Maine regions by adding seasonal deployments of underwater gliders equipped with transformative, newly developed and tested deep ISFET-based pH sensors and additional sensors (measuring temperature, salinity for total alkalinity and aragonite saturation [ΩArag] estimation, oxygen, and chlorophyll), optimizing existing regional sampling to enhance carbonate chemistry measurements in several key locations, and compiling and integrating existing OA assets. The researchers will apply these data to an existing NES ocean ecosystem/biogeochemical (BGC) model that resolves carbonate chemistry and its variability.
Coastal Maine supports valuable lobster, clam, oyster and other shellfish industries that comprise >90% of Maine’s record $616M landed value last year. Earlier monitoring efforts in Maine and New Hampshire have documented periods of unusually acidic conditions in subsurface waters of Maine’s estuaries, which may be driven by episodic influxes of waters from the Gulf’s nutrient-rich, highly productive coastal current system. Sources of acidity to the estuaries also include the atmosphere, freshwater fluxes, and local eutrophication processes, all modulated by variability imparted by a number of processes.This project is a data synthesis effort to look at long-term trends in water quality data to identify the key drivers of acidification in this area. Extensive data sets dating back to the 1980s (including carbonate system, hydrography, oxygen, nutrients, and other environmental variables) will be assembled, subjected to QA/QC, and analyzed to assess acidification events in the context of landward, seaward and direct atmospheric sources, as may be related to processes operating on tidal to decadal timescales. Such analyses are requisite for any future vulnerability assessments of fishery-dependent communities in Maine and New Hampshire to the effects of coastal acidification.
The long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification (OA) on coral ecosystems over time. This effort addresses NOAA’s Ocean Acidification Program (OAP) requirements for Monitoring of Ocean Chemistry by building and maintaining the coral reef portion of the OA monitoring network. This supports funding shortfalls associated with the NCRMP Class III MAPCO2 buoys at Cheeca Rocks and Kaneohoe Bay. Furthermore, this provides resources for the procurement of a new MAPCO2 buoy slated for deployment in Fagatele Bay, American Samoa in FY18, to establish the 2nd of three planned NCRMP Class III sites in the U.S. Pacific.
This project will expand the quantity and quality of ocean acidification (OA) monitoring across Northeastern U.S. coastal waters. The new OA data and incorporation of the world’s first commercial total alkalinity (TA) sensor into our regional observing system (NERACOOS) are designed to supply needed baseline information in support of a healthy and sustainable shellfish industry, and to aid in assessments and projections for wild fisheries. In working with partners to develop this proposal, clear concerns were brought forward regarding the potential impacts of increasing ocean acidity that extend from nearshore hatcheries and aquaculture to broader Gulf of Maine finfish and shellfish industries and their management. Stakeholder input and needs shaped the project scope such that both nearshore and offshore users will be served by TA sensor deployments on partner platforms, including time series data collection at an oyster aquaculture site, on the NOAA Ship of Opportunity AX-2 line, and on federal and State of Maine regional fish trawl surveys. In all, five different deployment platforms will be used to enhance ocean acidification monitoring within the Northeast Coastal Acidification Network (NE-CAN) with significant improvement in temporal and spatial coverage.
Adding the all-new TA measurement capability to the regional observation network will provide more accurate, certain, and reliable OA monitoring, and an important project objective is to demonstrate and relay this information to regional partners. Data products to be developed from the multi-year measurements include nearshore and offshore baseline OA seasonal time series as well as threshold indices tied to acidification impacts on larval production at the Mook Sea Farm oyster hatchery. An outreach and technical supervision component will include the transfer of carbonate system observing technologies to our partners and to the broader fishing industry, resource management, and science communities. NERACOOS will provide data management and communication (DMAC) services and work towards implementing these technological advances into the IOOS network.
Working across four IOOS Regional Associations in partnership with the shellfish industry and other groups affected by ocean acidification (OA), our proposal is divided into four tasks that continue the foundational aspects established to date and expand both technical capacity and the development of new technology with respect to OA observing needs for shellfish growers and other related impacted and potentially vulnerable U.S. industries, governments (tribal, state, local) and other stakeholders. Our proposed work includes development of observing technology, expert oversight intelligence, data dissemination, and outreach and will be executed by a team that includes a sensor technology industry and academic and government scientists. We will: 1) Develop new lower cost and higher accuracy sensor technology for OA monitoring and expand them to new sites; 2) Utilize regional partnerships of users and local experts to implement and provide Quality Assurance/Quality Control (QA/QC) tests of the new OA sensors; 3) Establish data handling and dissemination mechanisms that provide both user-friendly and standards-based web service access that are exportable from the Pacific Coast module to the entirety of U.S. Integrated Ocean Observing System (IOOS); and 4) Provide education and outreach services to stakeholders concerned about and potentially impacted by OA.
The objective of this project is to make significant strides in bridging the gap between scientific knowledge and current management needs by integrating existing biogeochemical model frameworks, field measurements, and experimental work toward the goals of (1) delineating atmospheric and eutrophication drivers of Chesapeake Bay acidification and improve our understanding of estuarine carbonate chemistry, (2) developing a spatially explicit framework to identify shellfish restoration areas most and least prone to acidification impacts, and (3) better understanding feedbacks associated with future environmental conditions and shellfish restoration goals estuary-wide and within a model tributary. This effort includes (1) a field campaign to make the first comprehensive study of the spatial and temporal variability in the carbonate system in Chesapeake Bay, (2) experiments to quantify both carbonate and nutrient exchange between intact oyster reefs and the surrounding water while measuring response of these fluxes to reef structure and acidification, and (3) an advancement in numerical modeling tools to simultaneously simulate the dynamics of eutrophication, hypoxia, carbonate chemistry, and oyster reef growth and interaction with the water-column under present and future conditions.
Humans have had a significant influence on estuaries through land use change and increased use of fertilizers, causing proliferation of algal blooms, hypoxia, and presence of harmful microbes. Now, acidification due to myriad processes has been identified as a potential threat to many estuaries. In Texas estuaries for example, short-term acidification as a result of episodic hypoxia is a well-documented phenomenon. Unfortunately, a longer-term trend toward chronic acidification (decreasing alkalinity, pH) has now been observed. The alkalinity decrease is likely caused by a reduction in riverine alkalinity export due to precipitation declines under drought conditions and freshwater diversions for human consumption.
Based on our existing long-term data, we hypothesize that hydrology acts as a switch, where increased river flows cause hypoxia and short-term acidification due to increased loads of organic matter, whereas prolonged low flows cause long-term acidification due to reduced loads of riverine alkalinity and calcification. In urbanized, wastewater-influenced systems, we hypothesize that reduced flows out of the watershed may lead to long-term acidification and chronic hypoxia due to reduced loads of riverine alkalinity and presence of low pH, high nutrient/organic matter wastewater.
To test our hypotheses, field and modeling studies are proposed to examine the relationships between estuarine acidification and other stressors (i.e., reduced freshwater inflow, hypoxia, and nutrient loading). Analysis of changes in ecosystem health and model calibration will be conducted based on long-term data. Mechanistic linkages between acidification, eutrophication and flow will be quantified through a field campaign. Chemical markers of organic matter sources fueling hypoxia will be determined. Future ecological states of the estuaries will be predicted using ecosystem models that account for projected changes in aforementioned parameters and ocean conditions based on IPCC estimates. The combination of prediction and consequence will be useful to multiple stakeholder groups.
The California Current System (CCS) is one of the most biologically productive regions of the world ocean, but seasonal upwelling of low oxygen and low-pH waters makes it particularly vulnerable to even small additional reductions in O2 and/or pH, which have both been observed in recent decades. Three prominent coastal phenomena have been implicated in precisely these changes: 1) large scale acidification and deoxygenation of the ocean associated with climate warming, 2) natural climate variability, and 3) anthropogenic pollution of coastal waters, especially from nutrient discharge and deposition. The relative importance of these drivers has not been systematically evaluated, and yet is critical information in any cost-effective strategy to manage coastal resources at local scales. Disentangling the magnitude and interaction of these different ecosystem stresses requites an integrated systems modeling approach that is carefully validated against available datasets.
The goals of this project are three-fold: 1) develop an ocean hypoxia and acidifcation (OHA) model of the CCS (Baja California to British Columbia), comprising the circulation, biogeochemical cycles, and lower-trophic ecosystem of the CCS, with regional downscaling in the Southern California Bight, Central Coast, and the Oregon Coast; 2) use the model to understand the relative contributions of natural climate variability, anthropogenically induced climate change, and anthropogenic inputs on the status and trends of OHA in the CCS; and 3) transmit these findings to coastal zone mangers and help them explore the implications for marine resource management and pollution control.
In terms of the commercial value of its shellfish and its importance as a finfish breeding ground, the western Gulf of Maine (GOM) is certainly one of the most valuable ecosystems in the United States. Because over 80% of organisms landed in the GOM must utilize calcium carbonate during certain critical life stages, the effects of ocean acidification (OA) on ecosystems are a topic of increasing regional concern. This notion was accentuated by recent demands from marine industry stakeholders and the State Legislature in Maine who convened an Ocean Acidification Commission to study and mitigate the effects of OA. By nature of its cool temperatures and copious freshwater subsidies from both remote and local origins, the western GOM may be particularly sensitive to future acidification stresses (Salisbury et al, 2008; Wang et al, 2013). With the goals of 1) providing data critical for climate studies and local decision support, and 2) understanding of regional processes affecting acidification, we propose to maintain data collection efforts at and proximal to UNH-PMEL acidification buoy. We will deploy, maintain and recover the buoy and its suite of instruments that provide quality oceanographic and carbonate system data. We will supplement these activities with seasonal cruises that map surface regional pCO2 and several surface variables supplemented with hydrographic and optical profiles at six stations along the UNH Wilkinson Basin Line (aka Portsmouth Line), which runs orthogonal to the coast. This in turn will be supplemented with ancillary bottle sampling and all will be used in research aimed at understanding processes controlling the dynamically evolving carbonate system in the western GOM.
The Ecosystem Monitoring program of the Northeast Fisheries Science Center conducts four dedicated cruises per year covering the entire extent of the Northeast United States (NEUS). NOAA OAP provides funding for the processing of dissolved inorganic carbon (DIC) and total alkalinity (TAlk ) samples from two Ecosystem Monitoring cruises. As part of these cruises, water samples have been taken at a subset of locations and at a range of depths. The depth-discrete nature of this sampling is very important and provides data to complement the more intensive surface sampling conducted by the pCO2 sensors. These samples are used to measure DIC and TAlk and their analyses are conducted by AOML. In addition, samples for among lab comparisons have been collected. Nutrient samples are also taken and are analyzed at University of Maine.
Initially, these samples will be used for an analysis comparing the extent of ocean acidification on the NEUS compared to the late 1970's. Subsequently, these samples will be used to provide continued monitoring of the state of ocean acidification. In addition, these samples will be used to better understand the relationship between carbonate chemistry and nutrient speciation on the NEUS. While interpretation of this data is complex, a consolidated analysis is being undertaken to develop an “Ocean Acidification Indicator” for the Northeast Shelf. This metric will provide resource managers and vested stakeholders a concise interpretation of current and near-term expected conditions of acidification in the region. This project also coordinates and cooperates with a number of other regional partners in an attempt to fulfill the regional monitoring vision of National OA Plan.
NOAA academic partners Salisbury and Cai will organize and lead a 34-days cruise covering 12 transects of the U.S. and Canadian coast oceans from Nova Scotia in the north to the Gulf of Maine, Long Island Sound, Mid-Atlantic and Southern Bight regions, ending with a transect off of mid Florida. This cruise will serve as a synoptic characterization of the marine carbonate parameters of the coastal ocean with increased coverage in nearshore areas that have not surveyed in the previous cruises and subsurface dynamics that are not captured from using buoyed assets or ships of opportunity. The climate quality data from these cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and serves as a start of a long-term record of dynamics and processes controlling Ocean Acidification (OA) on the coastal shelves. To this end there is an increasing focus on these cruises to perform rate measurements (e.g. NPP/NEP/NEC) for validation measurements of autonomous assets and buoyed assets, for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.
This project will provide service and maintenance of sensors and ground-truthing of the mooring data at the Gray's Reef OA monitoring site, as well as data quality control and synthesis. Specifically, we will accomplish the follow three tasks: 1. Deployment and maintenance of the sensors (pCO2, pH, and dissolved oxygen); 2. Collection of underway pCO2 data and bulk water samples for analyses using ship-of-opportunity and dedicated cruises about four times a year; and 3. Data quality control and data synthesis.
This project will serve to (1) synthesize National Coral Reef Monitoring Program (NCRMP) OA Enterprise observations; (2) compare reef OA observations to oceanic end members to infer reefscale biogeochemical processes, and finally (3) use these synthesis products to better link projection models of oceanic carbonate systems to reef-scale OA impacts. The NCRMP OA enterprise supports: our collection of seawater samples from reef and surface observations; a set of MapCO2 buoys in the Caribbean and Hawaii; diurnal monitoring instruments (e.g. CREP's diurnal suite, AOML's/McGillis' BEAMS); and metrics of ecosystem response to OA (e.g. CAUs, coral coring, etc.). The datasets generated by these activities will be the focus of this wide-ranging synthesis.
NCRMP‐OA is a Joint Enterprise designed to address the Tier 1 Ocean Acidification (OA) components of the larger NCRMP strategic framework at Class 0, II, and III stations. Field work and laboratory analyses for the Atlantic/Caribbean region (Florida, Puerto Rico, U.S. Virgin Islands [USVI], and Flower Garden Banks [FGB]) are executed by the OAR Atlantic Oceanographic and Meteorological Laboratory (AOML) and by the University of Puerto Rico (UPR) Caribbean Coastal Ocean Observing System (CariCOOS). Field work in the Pacific region (Main Hawaiian Islands [MHI], Northwestern Hawaiian Islands [NWHI], Guam, Commonwealth of the Northern Mariana Islands [CNMI], American Sāmoa, and the Pacific Remote Island Areas [PRIA]) is executed by the NMFS Pacific Islands Fisheries Science Center [PIFSC] Coral Reef Ecosystem Division (CRED); laboratory analyses for the Pacific region are executed by the OAR Pacific Marine Environmental Laboratory (PMEL). NCRMP‐OA Teams closely coordinate with other NCRMP elements (benthic, fish, water temperature, satellite, and socioeconomic teams), including PMEL’s NOAA Ocean Acidification Observing Network (NOA‐ON), other NOAA offices, Federal, State, and Territory agencies, and academic partners, in both the Atlantic and Pacific regions.
This project monitors changes to coral reef carbonate chemistry over time, at US affiliated coral reef sites, through quantifying key chemical parameters that are expected to be impacted by ocean acidification. This effort addresses OAP programmatic themes 1 and 5 by maintaining the coral reef portion of the OA monitoring network and developing a procedure for data synthesis, assimilation, and distribution. Incorporating an interdisciplinary approach, this project will collect, process, analyze, and steward dissolved inorganic carbon (DIC) and total alkalinity (TA) water sample data to document seawater carbonate chemistry at Class 0, II, III climate monitoring sites in coral reef areas of the US Atlantic and Pacific regions.
This OAP project represents the first contribution of OAP to sustained coastal Alaska OA monitoring through three years (2015-2017) of maintenance of two previously established OA mooring sites located in critical fishing areas. In FY2015, It also supported a 19 day OA survey cruise along the continental shelf of the Gulf of Alaska in summer of 2015, designed to fill observing gaps that have made it difficult to quantify the extent of OA events. This support has been critical for continuing OA research in Alaska, as the initial infrastructure funding was not sufficient or intended for long-term operation.
These OAP-sponsored monitoring and observing activities support a number of cross-cutting research efforts. Firstly, the data itself will provide new insights into the seasonal progression of OA events caused by the progressive accumulation of anthropogenic CO2 into the region's coastal seas. The mooring and cruise data can also be used as an early warning system for stakeholders around the state, as well as to provide information for other types of OA research. Other projects within the OAP Alaska Enterprise focus on laboratory based evaluation of the impact of OA on commercially and ecologically important Alaskan species, especially during the vulnerable larval and juvenile life stages. This environmental monitoring informs those studies by describing the intensity, duration, and extent of OA events and providing a baseline for projecting future conditions. Finally, this observational data is used to validate new OA models that are currently being developed for the Gulf of Alaska and Bering Sea, and are applied in bio-economic models of crab and pollock abundance forecasts (e.g., Punt et al., 2014; Mathis et al., 2014).
The California Current is a dynamic eastern boundary system that spans the Northeast Pacific from Canada to Baja California, Mexico. Upwelling of cold, nutrient rich water drives multi trophic level productivity throughout much of the domain, but also results in naturally acidic on-shelf waters on regional scales. In addition, anthropogenic CO2 on basin to global scales, and local inputs by eutrophication, fresh water inputs, and local respiration or carbon assimilation result in multiscale and context-specific perturbations to the carbonate system. Thus, to understand, manage, or mitigate the effect of ocean acidification on ocean ecosystems, we need to quantify a suite of carbonate system parameters along the Pacific Coast in a mechanistic, spatially explicit, and temporally dynamic fashion.
We propose to embed an improved semi-analytical carbonate-chemistry prediction model within a dynamic classification of pelagic seascapes derived from satellite remotely sensed variables, including, but not limited to, phytoplankton standing stock (chl-a), SST, and wind stress. We will produce synoptic time series and nowcasts of surface TCO2, TALK, pH and Ω that will facilitate regional comparisons of interannual trends in OA parameters. We will include metrics of model and spatiotemporal uncertainty to better inform management decisions. These maps will be validated with the wealth of multi-parameter OA data generated from recent NOAA-supported field-observational efforts, from coastal moorings, West-coast OA cruises, and shore-based Burke-o-Lators. Statistical analyses will quantify spatially explicit trends across OA parameters, and local deviations from seascape-based predictions will disentangle basin-scale oceanic vs. local drivers of the carbonate system. Maps will be served in near real time on IOOS data portals. Time series and maps will inform marine ecosystem management and provide metrics of ocean health for National Marine Sanctuary condition reports.
This project will provide time-series observations of coastal ocean pH and carbon system properties, along with other variables that affect carbon transformations, in the northern Gulf of Mexico in support of goals elucidated in the NOAA Ocean and Great Lakes Acidification Research Implementation Plan. This project most directly addresses Theme 1: Develop the monitoring capacity to quantify and track ocean acidification in open-ocean, coastal, and Great Lake systems, but also addresses the educational objectives of Theme 6. USM will maintain a 3- m discus buoy in the northern Gulf of Mexico with a PMEL MAPCO2 system that includes a CTD, dissolved oxygen, and pH sensors. Meteorological sensors on the buoy will be utilized for computing air-sea fluxes of CO2. Water samples and continuous vertical profiles will be taken at the buoy site during quarterly cruises. Water samples will be analyzed for DIC, TA, pH, dO, S, NUTS and chlorophyll a. Analyzed water samples and profile data will be submitted to NODC through standard NOAA OAP submission spreadsheets containing both data and associated metadata.
While this work is focused on the Gulf of Mexico additional time-series sites in the South Atlantic Bight and Gulf of Maine can provide a comparison over a wide range of coastal and latitudinal regimes. The northern Gulf of Mexico, Florida and South Atlantic Bight regions are all commonly influenced by one contiguous western boundary current system, which originates with the Loop Current in the Gulf of Mexico and then becomes the Gulf Stream along the southeastern U.S. continental shelf. The Gulf of Mexico observations will be compared with the other western boundary current influenced site in the South Atlantic Bight maintained by the University of Georgia (UGA) and the high latitude site in the Gulf of Maine maintained by the University of New Hampshire (UNH).
Analysis of the data collected during the first (2007) and the second (2012) Gulf of Mexico and East Coast Carbon (GOMECC) cruises showed measurable temporal pH and aragonite saturation state (ΩAr) changes along the eight major transects. However, it is challenging to determine how much of this temporal change between the two cruises is due to ocean acidification and how much is due to variability on seasonal to interannual scales. Indeed, the expected 2% average decrease in ΩAr due to increasing atmospheric CO2 levels over the 5-year period was largely overshadowed by local and regional variability from changes in ocean circulation, remineralization/respiration and riverine inputs (Wanninkhof et al., 2015). Therefore, in order to provide useful products for the ocean acidification (OA) research community and resource managers, it is important to filter out seasonal cycles and other variability from the multi-annual trend. Here, we propose to use a high-resolution regional ocean-biogeochemistry model simulation for the period of 1979 - present day (real-time run) to fill the temporal gap between the 1st and 2nd GOMECC cruise data. In addition we will fine-tune and validate the model by using extensive surface water pCO2 observations from the ships of opportunity in the coastal region (SOOP-OA), and using the carbon observations from the East Coast Ocean Acidification Cruises (ECOA-1) and OAP mooring stations and from remotely sensed data. Then, we will use the real-time model run to estimate the 5-year trends (2012 – 2007) of OA and the carbon and biogeochemical variables along the East and Gulf coasts of the U.S. We will also examine the future OA variability in the East and Gulf coasts of the U.S. by downscaling the future climate projections under different emission scenarios developed for the IPCC-AR5. Based on the results obtained from the proposed model simulations, we will contribute to an observational strategy suitable for elucidating multi-annual trend of carbon and biogeochemical variables along the East and Gulf coasts of the U.S.
NOAA operates the largest ship of opportunity (SOOP) effort for surface CO2 observations in the world. The objective of the ocean acidification (OA) monitoring effort in the coastal ocean on NOAA fisheries ships Gordon Gunter and Henry B. Bigelow is to obtain data for a data-based ocean acidification product suite for the East Coast and Gulf Coast. The ship of opportunity (SOOP) in support of OA monitoring (SOOP-OA) is in direct response to the needs expressed in the NOAA OA strategic plan, national and international program documentation, to understand how the rates and magnitude of acidification will vary across time and space, as a consequence of local and regional geochemical, hydrological, and biological variability and trends. The core of understanding rests upon monitoring the carbon system and related physical and biogeochemical parameters that are used to characterize the state of the coastal ocean in the project area.
The NOAA fisheries ships Gunter and Bigelow provide regular cruise tracks used in stock assessments such that over time correlations and causality can be obtained between OA and fisheries interests. The repeatability also provides good snapshots of change. As there are robust correlations between surface CO2 levels and remotely sensed parameters, these data are critical for the mapping of OA parameters. The development of algorithms to perform this mapping is done from support measurements on the SOOP-OA, other SOOP data under our purview, and from the dedicated research cruises.
Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics.
The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area. The GOMECC research cruises have now been divided into two cruises, one focused on the east coast, the “East Coast Ocean Acidification” (ECOA) cruise and the other covering the Gulf of Mexico, the “Gulf of Mexico Ecosystems and Carbon Cycle” (GOMECC) cruise.
The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.
The PMEL Carbon Group has been augmenting and expanding high-frequency observations on moorings to provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily to inter-annual cycles. The current NOAA Ocean Acidification Observing Network (NOA-ON) consists of 21 moorings in coral, coastal, and open ocean environments. At present, the OA mooring network includes a standardized suite of surface sensors measuring for air and seawater partial pressure of CO2 (pCO2), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. Although OA is primarily driven by uptake of CO2 from the atmosphere, many coastal and estuarine processes that affect water chemistry and the interpretation of coastal OA are manifested in subsurface waters. Furthermore, many of the most sensitive organisms (e.g. corals, shellfish) are benthic and respond to subsurface water chemistry.
The Moored Autonomous pCO2 (MAPCO2) systems currently used on the 21 OA moorings are uniquely adapted for surface only measurements. PMEL has demonstrated these MAPCO2 systems are compatible with and comparable to ship-based underway pCO2 systems and discrete validation measurements used in the NOA-ON. However, similar standardized methods and technologies have not been evaluated for subsurface observations on the existing mooring network. Our project evaluates the best carbon system technologies to deploy in the subsurface, demonstrate the utility of these enhanced observations on the moorings, and make recommendations on how advanced technologies can be incorporated into the NOA-ON.
This project contributes to the NOAA objective to provide accurate and reliable data from sustained and integrated earth observing systems through research, development, deployment, and operation of systems to collect detailed carbonate chemistry measurements as a part of a hydrographic research cruises along the west coast. The NOAA Ocean Acidification Monitoring Program along North American coastlines (Atlantic, Pacific, Gulf, and Alaskan) and in the global open ocean will focus on mapping and monitoring the distribution of key indicators of ocean acidification including carbon dioxide, pH, and carbonate mineral saturation states. The overarching goal of the program is to determine the trends in ocean acidification (OA) and to provide concrete information that can be used to address acidification issues. The detailed hydrographic research cruises that are planned to be conducted every four years along our coasts are essential for providing high-quality intercalibration data across the full suite of OA observing assets in coastal waters, including well-proven technologies such as the MAPCO2 moored CO2 system and underway pCO2 systems on ships-of-opportunity as well as developing technologies such as wave gliders and sensors for additional carbon parameters.
The hydrographic cruise measurements facilitate the overall monitoring effort's ability to address the near-term performance measure of quantifying aragonite saturation state in the areas studied to within 0.2. In addition, the recurring coast-wide cruises allow us a critical opportunity to assess OA conditions along the West Coast in a synoptic fashion. Cruise-based observations have provided critical information for model validation that is facilitating the improvement of next-generation physical-biogeochemical models projecting OA conditions into the past and the future.
PMEL's surface observational network, consisting of the complementary moorings and underway observations, is designed to quantify the temporal and spatial scales of variability of carbon species, pH, and aragonite saturation in surface waters. To assess spatial dynamics in OA and evaluate the synergistic effects of coastal processes along the coasts and in the open ocean, we will leverage our Ship of Opportunity Program (SOOP) infrastructure along the U.S. west coast. Underway observations have been enhanced by the collection and analysis of discrete DIC and TA samples beginning in FY 2010.
The primary objectives of our underway OA FY 2015–2017 sustained investment work plan are to maintain existing underway observations on NOAA Ships Oscar Dyson and Bell Shimada with autonomous pCO2, pH, and ancillary sensors that cover the continental shelf regions of Alaska, Washington, Oregon, and California. We plan to work with Dr. Rik Wanninkhof''s group at AOML to ensure that the underway OA system on NOAA Ship Ronald Brown is working well for the FY2016 West Coast Ocean Acidification cruise. In addition to making ongoing observations from existing OAP-funded CO2/pH SOOP platforms, during this funding period we are placing a major emphasis on finalizing QC on backlogged underway pH and DO data, distributing the final data to CDIAC and NODC data archives, and data synthesis and publication efforts. These efforts are being undertaken in conjunction with other members of the PMEL Carbon Group, the PMEL Science Data Integration Group, our AOML sister group, and Dr. Todd Martz at Scripps Institution of Oceanography. Finally, under the OAP SI FY15-17 work plan, we will continue to maintain the pH and O2 sensors that are presently on the container ship Cap Blanche and contribute to the trans-Pacific decadal time-series.
Since ocean acidification (OA) emerged as an important scientific issue, the PMEL Carbon Group has been augmenting and expanding our observational capacity by adding pH and other biogeochemical measurements to a variety of observing platforms. In particular, high-frequency observations on moorings provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily, seasonal, and interannual cycles. The current NOAA OA mooring network consists of 21 moorings in coral, coastal, and open ocean environments (Figure 1). At present, the OA mooring network includes surface measurements of CO2 (seawater and atmospheric marine boundary layer), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. The main objective of this network is to quantify temporal variability in the ocean carbon system. This includes describing how annual, seasonal, and event-scale variability impacts air-sea CO2 flux and ocean acidification; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts. Sustained investments in the OA mooring network maintain long-term time series of OA variability and change, allow the PMEL Carbon Group and partners to provide analyses and comparisons of patterns and trends across the network, and make these mooring data available to the public and the broader scientific community.
The main hypothesis that motivates this mooring network is that the range of natural variability as well as the rates and magnitude of acidification will vary across time, space, and depth as a consequence of local and regional geochemical, hydrological, and biological mechanisms. Similar to the iconic Mauna Loa atmospheric CO2 time series, the “ocean observatories” in the NOAA OA/CO2 mooring network gain importance with time as they, in this case, begin to distinguish ocean carbon uptake and ocean acidification from the large natural temporal variability in the marine environment. The main objective of the NOAA OA/CO2 mooring network is to quantify temporal variability in the ocean carbon system. This includes describing how annual, seasonal, and event-scale variability impacts CO2 flux and OA; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.
The goal of this component of the project is to continue the mooring and ship-based monitoring of the Ocean Acidification-impacted carbonate chemistry of US Pacific coastal waters. This objective will be accomplished by: 1) continued operation of the Oregon Ocean Acidification Mooring Program, including deployment and maintenance of the surface moorings at the established Ocean Acidification (OA) node at NH10 with surface MAPCO2 systems, nearbottom moorings with SAMI-CO2 and SAMI-pH systems at the NH10 site and the shelfbreak in the early stages of the project, followed by a relocation (following validation exercises, see #3) of these assets to a more biologically productive site to the south; 2) measurement support of the West Coast Ocean Acidification Cruise in 2016; and 3) a validation program for moored measurements off the Oregon Coast. The final component will include a parallel deployment of the NOAA-OAP moored assets at NH-10 for 6-12 months following establishment of the OOI node there to ensure consistency between the OAP and OOI platforms, as well as continued opportunistic sample collection for archiving and analyses in Hales; lab at OSU.
Working with the Carbon Group at NOAA’s Pacific Marine Environmental Lab, we propose to continue the now 4-year time series of real-time, high-frequency measurements of critical core OA parameters on the northern Washington shelf, including regular collection of validation samples. Specifically APL-UW will continue to maintain a heavily-instrumented surface mooring (Cha’ba) providing core OA and support parameters 13 miles WNW of La Push, WA, within the Olympic Coast National Marine Sanctuary, just shoreward and south of the Juan de Fuca Eddy---a known harmful algae bloom (HAB) source (Trainer et al., 2009; Hickey et al., 2013). Cha’ba currently houses a MAPCO2 system and many auxiliary sensors including two pH sensors, several CTDs, two oxygen sensors, an ADCP, and a fluorometer/turbidity sensor. Because of budget limitations, lack of ship time, and possessing only one surface mooring, we are only able to deploy the Cha’ba system for 6-8 mo/yr, typically from March-April through September-October. A LOI is attached to this workplan that would allow for continuous 12 mo/yr deployments in order to bring this to the full requirements of NOAA OAP. Cha’ba’s location, in an upwelling zone and near the source waters to Puget Sound via the Strait of Juan de Fuca, offers key insights. While Cha'ba records surface air and seawater conditions with some depth resolution, NANOOS also supports a subsurface profiling mooring 400m away from Cha''ba, measuring full water-column properties below 20m, soon to be instrumented (US IOOS funding) with a real-time HAB detection system, pH sensor and profiling CTD offering broader context and insights on biological responses. Synergies between OA and HAB toxicity have been suggested (Sun et al., 2011). Continuation of the MAPCO2 effort on Cha''ba with these ancillary data will facilitate analysis to further develop our understanding of shelf processes important to OA variability, prediction, and biological responses.
This project will deploy two interdisciplinary moorings (CCE1 and CCE2) in the southern California Current System, a key coastal upwelling ecosystem along the west coast of North America. The study region forms the dominant spawning habitat for most of the biomass of small pelagic fishes in the entire California Current System, is important for wild harvest of diverse marine invertebrates and fishes, plays a significant role in the ocean carbon budget for the west coast, and is in close proximity to the Channel Islands National Marine Sanctuary. The offshore CCE1 mooring is located in the core flow of the California Current itself, and represents a key source of horizontal transport of nutrients, dissolved gases, and organisms from higher latitudes. It also represents the offshore atmosphere-ocean gas exchange that occurs over a large area and influences the carbon budget of this Eastern Boundary Current. The CCE2 mooring is located near Pt. Conception, one of the major upwelling centers off the west coast. This is a site of strong, episodic upwelling events that lead to marked increases in pCO2, declines in pH and dissolved oxygen, and intrusion of waters unfavorable to precipitation of calcium carbonate by some shell-bearing marine organisms. The proposed work will regularly deploy and service taut line, bottom-anchored moorings at the two mooring sites, with sensors designed to measure all core carbonate system variables specified by the PMEL OA Monitoring Network. The data will be validated with shipboard measurements and rigorous QC procedures, and made freely available via Iridium satellite telemetry. Complementary measurements made by partners in this region include Spray glider-based assessments of calcium carbonate saturation state, CalCOFI shipboard hydrographic and plankton food web measurements, process studies conducted by the CCE-LTER (Long Term Ecological Research) site, and a new experimental Ocean Acidification facility.
PI: Uwe Send