FISH
SHELLFISH
PLANKTON

 

Biological Response

NOAA's Ocean Acidification Program supports research that focuses on economically and ecologically important marine species. Research of survival, growth, and physiology of marine organisms can be used to explore how aquaculture, wild fisheries, and food webs may change as ocean chemistry changes.


FISHERIES SCIENCE CENTERS

A number of NOAA National Marine Fisheries Service Science Centers have state-of-the-art experimental facilities to study the response of marine organisms to the chemistry conditions expected with ocean acidification.

The Northeast Fisheries Science Center has facilities at its Sandy Hook, NJ and Milford, CT laboratories; the Alaska Fisheries Science Centers at its Newport, OR and Kodiak, AK laboratories; and the Northwest Fisheries Science Center at its Mukilteo and Manchester, WA laboratories. All facilities can tightly control carbon dioxide and temperature. The Northwest Fisheries Science Center can also control oxygen, and can create variable treatment conditions for carbon dioxide, temperature, and oxygen. These facilities include equipment for seawater carbon chemistry analysis, and all use standard operating procedures for analyzing carbonate chemistry to identify the treatment conditions used in experiments.

 


Corals

Both deep sea and shallow reef-building corals have calcium carbonate skeletons.  As our oceans become more acidic, carbonate ions, which are an important part of calcium carbonate structures, such as these coral skeletons, become relatively less abundant. Decreases in seawater carbonate ion concentration can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms such as coral.

 


Fish

Increased levels of carbon dioxide in our ocean can have a wide variety of impacts on fish, including altering behavior, otolith (a fish's ear bone) formation, and young fish's growth. Find out more about what scientists are learning about ocean acidification impacts on fish like rockfish, scup, summer flounder, and walleye pollock.


Shellfish

Shellfish, such as oyster, clams, crabs and scallop, provide food for marine life and for people, too. Shellfish make their shells or carapaces from calcium carbonate, which contains carbonate ion as a building block. The decreases in seawater carbonate ion concentration expected with ocean acidification can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms like shellfish. This may impact their survival, growth, and physiology, and, thus, the food webs and economies that depend on them.


Plankton

Plankton are tiny plants and animals that many marine organisms, ranging from salmon to whales, rely on for nutrition. Some plankton have calcium carbonate structures, which are built from carbonate ions. Carbonate ions become relatively less abundant as the oceans become more acidic. Decreases in seawater carbonate ions can make building and maintaining shells and other calcium carbonate structures difficult for calcifying marine organisms such as plankton. Changes to the survival, growth, and physiology of plankton can have impacts throughout the food web.


OAP SUPPORTED BIOLOGICAL RESPONSE PROJECTS

Marine Scientist Position with focus on Ocean Acidification

State of Washington Department of Ecology

The Environmental Assessment Program (EAP) program within the Department of Ecology is looking to fill a Marine Scientist (Natural Resource Scientist 2) position. Applications are due April 24, 2018.

This position is located at our Headquarters Building in Lacey, WA but conducts work statewide. This position is responsible for conducting marine water quality monitoring, with a focus on ocean acidification. Responsibilities include implementing the addition of ocean acidification-relevant parameters to Ecology's marine waters monitoring program in Puget Sound. This position is also responsible for oceanographic sampling gear preparation and use, instrument calibration (CTD and other electronic sensors), laboratory sample analyses, data analysis, and report writing. The data collected is used to determine the status and trends of marine water quality in context to ocean acidification in Washington state.

More information here

Wednesday, April 11, 2018

Postdoctoral Fellow in Chemical Oceanography

University of Delaware

The University of Delaware (UD) College of Earth, Ocean, and Environment is seeking applications for a Postdoctoral Research Scientist position in chemical oceanography and metrology. The successful candidate will work on a NOAA funded project to aid in the development of a reference material for ocean pH by establishing traceability of pH indicator dyes to the International System of Units (SI). The scholar will make use of state-of-the-art analytical and experimental facilities at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. Candidates must have a PhD in either chemical oceanography, analytical chemistry, or a closely related field. Demonstrated skills with spectrophotometry, potentiometry, nuclear magnetic resonance spectroscopy, and/or physical chemistry are preferred. The position will be located at the NIST facility in Gaithersburg, MD, but the appointment will be made through the University of Delaware. The postdoc will also attend field test cruises with the UD group. The appointment will be for one year, with continuation pending funding and progress.

Please contact Wei-Jun Cai (wcai@udel.edu) and Regina Easley (regina.easley@nist.gov) for additional information.

Wednesday, April 11, 2018

Mid-Atlantic Ocean Acidification Graduate Fellowship Opportunity

Ocean Acidification Program and Sea Grant

The Mid-Atlantic Sea Grant Programs in partnership with the NOAA Ocean Acidification Program, are pleased to announce the availability of Ocean Acidification Graduate Research Fellowships for a two-year period covering the 2018 and 2019 academic years. The fellowship is open to full-time graduate students at any academic institution in Delaware, Maryland, New Jersey, New York and Virginia who are engaged in coastal and marine research relevant to regional ocean, coastal, and estuarine acidification. The focus should be on improving understanding of the potential ecological consequences of increasing carbon dioxide concentration in regional coastal waters. Projects may encompass natural and/or social science research topics.

Proposals are being accepted through 5:00 pm ET on Friday, April 13, 2018 via eSeaGrant.  

This announcement and additional information can be found on each state Sea Grant program’s website.


Monday, March 5, 2018

Postdoctoral opportunity: NORTHERN GULF OF MEXICO inorganic carbon, pH, and oxygen DYNAMICS

University of Delaware

Applications are being accepted for a Postdoctoral Research Associate position at the School of Marine Science and Policy, the University of Delaware working with Dr. Wei-Jun Cai, available immediately. This NSF-funded project focuses on the dynamics of inorganic carbon, pH, and oxygen as well as the interactions between ocean acidification and coastal ocean eutrophication in the Mississippi River plume and Northern Gulf of Mexico hypoxic region.

Wednesday, September 14, 2016

PhD opportunity: Impacts of ocean acidification on the –omics responses in green-shell mussels

University of Auckland

The School of Biological Sciences, University of Auckland, New Zealand, invites applications for a PhD project on the transcriptomic, proteomic, and metabolomic responses of green-shell mussels to ocean acidification. This project is part of the CARIM project – (https://www.niwa.co.nz/coasts-and-oceans/research-projects/carim-coastal-acidification-rate-impacts-management) which examines the ecosystem effects of ocean acidification on primary production, food quality and habitat availability, with a particular focus on the sensitivity of the different life stages of iconic NZ species including pāua, greenshell mussel and snapper larvae.

Wednesday, August 31, 2016
RSS
12