FISH
SHELLFISH
PLANKTON

 

Biological Response

NOAA's Ocean Acidification Program supports research focused on economically, ecologically, and culturally important marine species. We can use what we know about survival, growth, and physiology to explore how aquaculture, wild fisheries, and food webs may change as ocean chemistry changes.


FISHERIES SCIENCE CENTERS

NOAA National Marine Fisheries Service Science Centers have state-of-the-art experimental facilities to study the response of marine life to the chemistry conditions expected with ocean acidification.

The Northeast Fisheries Science Center has facilities at its Sandy Hook, NJ and Milford, CT laboratories; the Alaska Fisheries Science Centers at its Newport, OR and Kodiak, AK laboratories; and the Northwest Fisheries Science Center at its Mukilteo and Manchester, WA laboratories. All facilities can tightly control carbon dioxide and temperature. The Northwest Fisheries Science Center can also control oxygen, and can create variable treatment conditions for carbon dioxide, temperature, and oxygen. At the Pacific Islands Fisheries Science Center, coral research connects ocean conditions with reef health. These facilities include equipment for seawater carbon chemistry analysis, and all use standard operating procedures for analyzing carbonate chemistry to identify the treatment conditions used in experiments.

RESEARCH LABORATORIES

NOAA national laboratories are global leaders for delivering innovative strategies for ocean observations and support tools for managing marine resources. 

NOAA’s Pacific Marine Environmental Laboratory (PMEL) makes critical observations and conducts groundbreaking research to advance our knowledge of the global ocean and its interactions with the earth, atmosphere, ecosystems, and climate. This includes research, observations, and technology development in support of society's response to urgent challenges with ocean acidification and ocean change.  NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) conducts world-class Earth system research, with a focus on the Atlantic Ocean region, to inform: the accurate forecasting of extreme weather and ocean phenomena, the management of marine resources, and an understanding of climate change and associated impacts. AOML improves ocean and weather services including advancing our understanding of ocean and coastal acidification and its potential impacts on coral reef and other ecosystems.

 


Corals

Both deep sea and shallow reef-building corals have calcium carbonate skeletons.  As our oceans become more acidic, carbonate ions, which are an important building blocks of calcium carbonate structures like coral skeletons, become relatively less abundant. Decreases in these building blocks make building and maintaining calcium carbonate structures harder for calcifying marine organisms such as coral.

 


Fish

Increased levels of carbon dioxide in our ocean can have a wide variety of impacts on fish, including altering behavior, otolith (a fish's ear bone) formation, and young fish's growth. Find out more about what scientists are learning about ocean acidification impacts on fish like rockfish, scup, summer flounder, and walleye pollock.


Shellfish

Shellfish, such as oyster, clams, crabs and scallop, provide food for marine life and for people, too. Shellfish make their shells from calcium carbonate, which contains carbonate ion as a building block. The decreases in seawater carbonate ion concentration expected with ocean acidification can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms like shellfish. This may impact their survival, growth, and physiology, and, thus, the food webs and economies that depend on them.


Plankton

Plankton are tiny plants and animals that many marine organisms, from salmon to whales, rely on for nutrition. Some plankton have calcium carbonate structures, which are built from carbonate ions. Carbonate ions become relatively less abundant as the oceans become more acidic. Decreases in these building blocks can make building and maintaining shells and other calcium carbonate structures difficult for calcifying marine organisms such as plankton. Changes to the survival, growth, and physiology of plankton can have impacts throughout the food web.


OAP SUPPORTED BIOLOGICAL RESPONSE PROJECTS

Ocean Acidification at a Crossroad– Enhanced Respiration,Upwelling, Increasing Atmospheric CO2, and their interactions in the northwestern Gulf of Mexico”

Xinping Hu, Texas A&M University-Corpus Christi

Among the NOAA designated Large Marine Ecosystems, the Gulf
of Mexico (GOM) remains poorly understood in terms of its current OA conditions, despite its
ecological and economic significance. In the northwestern GOM (nwGOM), decadal
acidification has been observed in the shelf-slope region, with metabolic production of CO2
contributing to a larger fraction of CO2 accumulation than uptake of anthropogenic CO2, and the
observed rate of acidification is significantly greater than that in other tropical and subtropical
areas. Unfortunately, whether the observed OA in this region represents a short-term
phenomenon or a long-term trend is unknown.
It is hypothesized that increasing atmospheric CO2, increasing terrestrial nutrient export
due to an enhanced hydrological cycle, and enhanced upwelling due to climate change will cause
the continental shelf-slope region in the nwGOM to acidify faster than other tropical and

subtropical seas. In order to test this hypothesis wave gliders, in -stiu sensor along withe underway measurements from research vessels will measure carbonated chemistry in in surface and shallow  waters. Modeling will be used tp integrate the chemical signals into the models to hindcast/predict spatia; and temporal variation of the OA signal for the the optimization of monitoring design and implementation.

Tuesday, March 3, 2020

Optimizing Ocean Acidification Observations for Model Parameterization in the Coupled Slope Water System of the U.S. Northeast Large Marine Ecosystem

Grace Saba, Rutgers University

The U.S. Northeast Shelf Large Marine Ecosystem, supports some of the nation’s most economically valuable coastal fisheries, yet most of this revenue comes from shellfish that are sensitive to ocean acidification (OA). Furthermore, the weakly buffered northern region of this area is expected to have greater susceptibility to OA. Existing OA observations in the NES do not sample at the time, space, and depth scales needed to capture the physical, biological, and chemical processes occurring in this dynamic coastal shelf region. Specific to inorganic carbon and OA, the data available in the region has not been leveraged to conduct a comprehensive regional-scale analysis that would increase the ability to understand and model seasonal-scale, spatial-scale, and subsurface carbonate chemistry dynamics, variability, and drivers in the NES. This project optimizes the NES OA observation network encompassing the Mid-Atlantic and Gulf of Maine regions by adding seasonal deployments of underwater gliders equipped with transformative, newly developed and tested deep ISFET-based pH sensors and additional sensors (measuring temperature, salinity for total alkalinity and aragonite saturation [ΩArag] estimation, oxygen, and chlorophyll), optimizing existing regional sampling to enhance carbonate chemistry measurements in several key locations, and compiling and integrating existing OA assets. The researchers will apply these data to an existing NES ocean ecosystem/biogeochemical (BGC) model that resolves carbonate chemistry and its variability. 


Tuesday, March 3, 2020

PHD Opportunity: The changing carbonate chemistry of the Southern Ocean

University of East Anglia

Until now, sea ice dynamics and ocean acidification in the Southern Ocean have been investigated in isolation. Here, you will investigate the interplay between both. This PhD project has these objectives:

  • To quantify the progression of ocean acidification in the Southern Ocean over recent decades;
  • To determine the processes affecting Southern Ocean carbonate chemistry and in particular the role of sea ice.
  • To study the seasonal cycle of the Southern Ocean CO2 sink and its drivers.
Wednesday, October 19, 2016
Categories: Job Postings
RSS