NOAA's Ocean Acidification Program supports research focused on economically, ecologically, and culturally important marine species. We can use what we know about survival, growth, and physiology to explore how aquaculture, wild fisheries, and food webs may change as ocean chemistry changes.
NOAA National Marine Fisheries Service Science Centers have state-of-the-art experimental facilities to study the response of marine life to the chemistry conditions expected with ocean acidification.
The Northeast Fisheries Science Center has facilities at its Sandy Hook, NJ and Milford, CT laboratories; the Alaska Fisheries Science Centers at its Newport, OR and Kodiak, AK laboratories; and the Northwest Fisheries Science Center at its Mukilteo and Manchester, WA laboratories. All facilities can tightly control carbon dioxide and temperature. The Northwest Fisheries Science Center can also control oxygen, and can create variable treatment conditions for carbon dioxide, temperature, and oxygen. At the Pacific Islands Fisheries Science Center, coral research connects ocean conditions with reef health. These facilities include equipment for seawater carbon chemistry analysis, and all use standard operating procedures for analyzing carbonate chemistry to identify the treatment conditions used in experiments.
NOAA national laboratories are global leaders for delivering innovative strategies for ocean observations and support tools for managing marine resources.
NOAA’s Pacific Marine Environmental Laboratory (PMEL) makes critical observations and conducts groundbreaking research to advance our knowledge of the global ocean and its interactions with the earth, atmosphere, ecosystems, and climate. This includes research, observations, and technology development in support of society's response to urgent challenges with ocean acidification and ocean change. NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) conducts world-class Earth system research, with a focus on the Atlantic Ocean region, to inform: the accurate forecasting of extreme weather and ocean phenomena, the management of marine resources, and an understanding of climate change and associated impacts. AOML improves ocean and weather services including advancing our understanding of ocean and coastal acidification and its potential impacts on coral reef and other ecosystems.
Both deep sea and shallow reef-building corals have calcium carbonate skeletons. As our oceans become more acidic, carbonate ions, which are an important building blocks of calcium carbonate structures like coral skeletons, become relatively less abundant. Decreases in these building blocks make building and maintaining calcium carbonate structures harder for calcifying marine organisms such as coral.
Increased levels of carbon dioxide in our ocean can have a wide variety of impacts on fish, including altering behavior, otolith (a fish's ear bone) formation, and young fish's growth. Find out more about what scientists are learning about ocean acidification impacts on fish like rockfish, scup, summer flounder, and walleye pollock.
Shellfish, such as oyster, clams, crabs and scallop, provide food for marine life and for people, too. Shellfish make their shells from calcium carbonate, which contains carbonate ion as a building block. The decreases in seawater carbonate ion concentration expected with ocean acidification can make building and maintaining calcium carbonate structures difficult for calcifying marine organisms like shellfish. This may impact their survival, growth, and physiology, and, thus, the food webs and economies that depend on them.
Plankton are tiny plants and animals that many marine organisms, from salmon to whales, rely on for nutrition. Some plankton have calcium carbonate structures, which are built from carbonate ions. Carbonate ions become relatively less abundant as the oceans become more acidic. Decreases in these building blocks can make building and maintaining shells and other calcium carbonate structures difficult for calcifying marine organisms such as plankton. Changes to the survival, growth, and physiology of plankton can have impacts throughout the food web.
Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics.
The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.