SOARCE ARCHIVE

Assessing risks of ocean acidification in south-central and southeast Alaska

Tom Hurst - NOAA Alaska Fisheries Science Center

Evaluating ocean acidification vulnerability and interactions among traditional and coastal Alaska industries

Why we care
Many marine species affected by ocean acidification (OA) contribute to Alaska’s highly productive commercial fisheries and traditional subsistence ways of life. Concern exists that acidification will cause ecosystem-level shifts, diminishing the overall economic value of commercial fisheries and reducing food security for communities relying on subsistence harvests. 

What we are doing
This project addresses acidification threats in south-central and southeast Alaska. It involves the development of decision support tools incorporating acidification risks into localized socio-ecological systems. The tools are based on a network of models representing acidification hazards, bio-ecological systems, and socioeconomic systems linked to adaptive actions.

Benefits of our work
This project is an exchange of knowledge between scientists, policy makers, and community stakeholders. The network of models creates decision support tools responsive to stakeholder concerns that reflect regional variation in community priorities and their ecological social and management context. The project synthesizes the best available science to determine the risks posed by ocean acidification.

Thursday, June 23, 2022

Next-Gen gene sequencing to understand effects of ocean acidification on Alaskan crab and fish

Chris Long - NOAA/NMFS Alaska Fisheries Science Center

Using next-generation sequencing techniques to assess adaptive capacity and illuminate mechanisms underlying the effects of high pCO2 on Alaskan crab and fish species

Why we care
Many economically important crab and fish species are negatively affected by exposure to ocean acidification predicted to occur throughout their ranges in the coming decades. Ocean acidification results in decreased growth, altered development, weaker exoskeletons, increased energy outputs, altered immune systems, altered behavior, and increased mortality in some of these species. Other stressors such as increased temperature can have interactive negative effects when combined with ocean acidification. Traditional laboratory experiments cannot duplicate the gradual changes that will affect species populations over multiple life-history stages and generations, so using next-generation genetic approaches provide insight into effects beyond specific life stages.

What we are doing 
This study will use next-generation sequencing techniques to identify specific alterations in the molecular, metabolic, and physiological pathways of individuals exposed to ocean acidification. This is a way to identify pathways that impart tolerance to ocean acidification and warming. This project determines the effect of ocean acidification and thermal stress on gene expression in Pacific cod larvae and juvenile Tanner crab and identifies genetic markers indicating ocean acidification resilience. 

Benefits of our work
Investigators will identify the cellular pathways that impart tolerance to ocean acidification. By comparing individuals that demonstrate low sensitivity to ocean acidification and with the general population, we enhance the ability to predict how adaptation will alter the species’ response to future ocean conditions. This research will inform the fishing industry and coastal, fisheries-dependent Alaskan communities about potential effects of ocean change on commercially important species. Outcomes can be used to drive future responses and adaptations in these industries regarding affected fisheries.

Thursday, May 26, 2022

OAP Deputy Director contributes to effort to identify research need to understand impacts and explore adaptation in Arctic

April 28th, 2018

OAR OAP Deputy Director participated in the AMAP/EU-PolarNet Stakeholder Workshop on Research Needs on Climate-Related Effects on the Arctic Cryosphere and Adaptation Options. Participants discussed research issues in relation to both the need for further scientific understanding of the impacts of the rapidly changing climate on the Arctic cryosphere and the need for investigation of options for adaptation to these changes by Arctic communities and residents.
Monday, April 30, 2018
Tags:

OAP Serves on Panel to Strengthen Collaborative Ocean Acidification Research in the Arctic

August 29th, 2017

Max Kaplan, a Knauss Fellow with the OAP,  will be serving on a panel at the Arctic Science Networking Workshop hosted by the Arctic Council to be held in Helsinki, Finland. He will be speaking to opportunities to strengthen international collaborations in ocean acidification monitoring in the Arctic, a region that is particularly vulnerable to changes in ocean chemistry
Sunday, August 27, 2017
Tags:
Research shows ocean acidification is spreading rapidly in the Arctic

Research shows ocean acidification is spreading rapidly in the Arctic

NOAA Oceanic and Atmospheric Research

Ocean acidification is spreading rapidly in the western Arctic Ocean in both area and depth, potentially affecting shellfish, other marine species in the food web, and communities that depend on these resources, according to new research published in Nature Climate Change by NOAA, Chinese marine scientists and other partners.

Tuesday, March 14, 2017
RSS
12