Societal impacts and adaptation strategies

Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.


The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.

Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.

Figure from: Harvey et al. 2010

Ecosystem Modeling

Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.

How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.

Economic Projections

Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.

For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.


How can we adapt to our changing ocean? 

The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.







Turning current observations into forecasts is the key mechanism by which adaptation plans are created.

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.


NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.

Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats.  Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations.  In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters.   Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.




Ocean acidification is a global challenge, and the most effective adaptation strategies are holistic, incorporating the knowledge and experiences of many sectors. As an answer to the difficulty of bridging geographic and professional divides, together with the Interagency Working Group on Ocean Acidification, NOAA helped launch the Ocean Acidification Information Exchange, an online community and discussion forum.

The OA Information Exchange is designed to make it easy  to connect and find information, with tools to post updates, share documents, media, links, and events with fellow members. The site welcomes scientists, educators, students, policy makers, members of industry, and concerned citizens to help fulfill the mission of building a well-informed community ready to respond and adapt to ocean and coastal acidification. If you would like to join the conversation, please request an account at

EXPLORE THE IOOS Pacific Region Ocean Acidification
Data portal

This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.


NOAA and Partners Launch Research Cruise of East Coast to Study Ocean Acidification

By: NOAA Ocean Acidification Program

Author: Anonym/Monday, June 22, 2015/Categories: ocean acidification, OA monitoring

Rate this article:
No rating

NOAA and partners launch research cruise of East Coast to study ocean acidification

NOAA and scientists from Princeton, Old Dominion University, and the Universities of New Hampshire, Delaware, and Miami set off on June 19th from Newport, Rhode Island aboard NOAA ship Gordon Gunter on a research cruise to better understand ocean acidification and its drivers along the U.S. East Coast. 

The R/V Gordon Gunter stationed in Newport, RI will be surveying carbonate chemistry on a 34 day research cruise,which began in the Canadian Maritime waters and will end along the Florida coast. Principal investigators of the expedition are Dr. Joe Salisbury from University of New Hampshire and Dr. Janet Reimer from University of Delaware Photo credit: Marc Emond, University of New Hampshire.  

This research cruise is just one part of a larger effort supported by the NOAA Ocean Acidification Program to better understand how ocean chemistry along all the U.S. coasts is changing in response to ocean acidification and where marine organisms may be at greatest risk. Similar cruises have taken place on the U.S. West Coast and the Gulf of Mexico. Understanding why and how fast our ocean chemistry is changing in different areas will allow scientists to better predict future changes and explore ways to adapt to those shifts.

The Gunter will travel north to survey the waters of the Nova Scotia Shelf and will then steam south, surveying waters close to shore to provide more detailed information about water chemistry within the Gulf of Maine, Long Island Sound, the Mid-Atlantic and Southern Bight regions than previous surveys. The ship will also investigate central Florida waters before reaching Miami on July 24.”

“We will be covering a larger area of the East Coast and going much closer to shore than ever before so that we can better understand the many factors contributing to ocean acidification,” said Dwight Gledhill, Deputy Director of the NOAA Ocean Acidification Program.  

This is the first time that scientists will get an in depth view of the waters in the Gulf of Maine. 

“Understanding the chemistry of water on the Scotian Shelf is critical for us to understand how ocean acidification might unfold in Maine,” Gledhill says, “The Labrador Current, which flows over the shelf and into this region is freshening due to climate change and increased Arctic ice melt. These fresher waters are more corrosive, so understanding how that will affect Maine waters is an important part of this survey.”” 

By collecting and analyzing water samples in near shore and deeper waters, scientists will better understand what drives the process of ocean acidification in different areas of the East Coast shelf. Another area new to the survey is Long Island Sound, an urbanized estuary, which is known to become acidic with low oxygen or hypoxia events. This is the first time that both carbon dioxide and oxygen, along with nutrient levels will be measured in these waters. These measurements may give insight into how nutrient run off from land based activities will impact seawater chemistry in this area. 

The CTD/rosette is an instrument that is deployed into the water to measure conductivity, temperature and density.  This rosette has a mascot for good luck at sea; "Betty" the praying mantis. Photo credit: Marc Emond, University of New Hampshire.

The ship and its crew will hug the coast as they proceed South and will be coordinating with the Environmental Protection Agency (EPA) to take measurements in very near shore waters that are too shallow for the Gunter to reach. In both Narragansett and Delaware Bays, scientists from the EPA will continue with measurements landward of the Gunter’s coastal station in coastal waters. This Mid- Atlantic Shelf region is important for sea scallop production, a significant resource and important fishery and component of the economy in this region.  

The ship will come to port in Norfolk, Va., on July 4 before continuing south. Throughout the entire survey, scientists on board will also look at how single-celled marine plants, or phytoplankton, affect ocean chemistry. Tracking ocean acidification which is caused in large part by an increase in atmospheric carbon dioxide from the burning of fossil fuels, demands careful determination of not only the marine carbonate system, but also a suite of measures that give insight into the key organisms which can modify the chemistry. Both photosynthesis and respiration of these small marine plants and other tiny organisms can alter carbon dioxide levels in the water.

Scientists will measure both carbon and oxygen in the water to better understand how they affect the growth of phytoplankton that are at the base of the food chain. Phytoplankton are not only important to the marine food chain, but these marine plants also control carbon chemistry. Scientists from the National Aeronautic and Space Administration (NASA) are working to use satellite capabilities to “see” the kind phytoplankton in the ocean by identifying the color of the ocean. Researchers on board the Gunter will sample phytoplankton in the water as a NASA satellite measures the ocean’s color in the same location.

“There are only a few things you can measure from space such as temperature, salinity and ocean color,” says Gledhill. “If we can confirm what phytoplankton are in the water at the same time the satellite is over head, while also measuring carbon chemistry this could allow scientists to relate changes in carbon chemistry to the types of phytoplankton in the water sometime in the future.”

This cruise will cover new areas and get more in depth information along the U.S. East Coast to understand the factors that influence ocean and coastal acidification. Because the East Coast has a broad shallow shelf, potentially corrosive, freshwater discharge out of rivers into the coastal ocean could be a major contributor to changing ocean chemistry. This survey will allow scientists to understand how fresher waters, coastal influences, and phytoplankton may alter our ocean chemistry. This environmental information on ocean acidification is essential to predicting its effects on important marine resources, so that communities can mitigate and adapt to these changes.


Number of views (5411)/Comments (0)

Please login or register to post comments.