Societal impacts and adaptation strategies

Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.


The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.

Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.

Figure from: Harvey et al. 2010

Ecosystem Modeling

Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.

How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.

Economic Projections

Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.

For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.


How can we adapt to our changing ocean? 

The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.







Turning current observations into forecasts is the key mechanism by which adaptation plans are created.

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.


NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.

Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats.  Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations.  In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters.   Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.




Ocean acidification is a global challenge, and the most effective adaptation strategies are holistic, incorporating the knowledge and experiences of many sectors. As an answer to the difficulty of bridging geographic and professional divides, together with the Interagency Working Group on Ocean Acidification, NOAA helped launch the Ocean Acidification Information Exchange, an online community and discussion forum.

The OA Information Exchange is designed to make it easy  to connect and find information, with tools to post updates, share documents, media, links, and events with fellow members. The site welcomes scientists, educators, students, policy makers, members of industry, and concerned citizens to help fulfill the mission of building a well-informed community ready to respond and adapt to ocean and coastal acidification. If you would like to join the conversation, please request an account at

EXPLORE THE IOOS Pacific Region Ocean Acidification
Data portal

This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.


NOAA awards will help improve projections of acidification impacts in changing coastal waters

NOAA Ocean Acidification Program

Author: Jennifer Mintz/Monday, January 4, 2016/Categories: ocean acidification, OA monitoring

Rate this article:
No rating

Awards of $1.3 million this year, totaling $4.1 million over three years, will focus on understanding the combined effects of ocean acidification, low oxygen and nutrient pollution on economically and ecologically important species in coastal habitats.

Scientists measure water quality in the Corpus Christi Bay area. Photo credit: Larry Hyde

It is clear that our ocean is increasing in acidity as a result of carbon dioxide seeping into open ocean surface waters. But closer to shore things become a bit murky, as other factors can also change the chemistry of coastal waters. In these waters which are home to many important marine organisms on which coastal communities rely, scientists will be working to shed light on the potential impacts of acidification and other stresses.

There are distinct factors that create these stresses and drive acidification in coastal areas. “It is crucial that we understand how the ocean chemistry is changing in different places, and how it will affect commercial fisheries and critical marine habitats in valued coastal communities,” said Libby Jewett, Ph.D., director of NOAA’s Ocean Acidification Program. These awards will allow studies of the coastal water chemistry on the US west coast, in the Gulf of Mexico and the Chesapeake Bay to take place over the next few years.

These near shore waters are not only home to valued marine organisms, but are also susceptible to the effects of land based activities. Many coastal areas are experiencing stresses including low oxygen levels and increased nutrient runoff from land into coastal waters. Increased nutrient runoff causes blooms of tiny marine plants or algae. When the algal blooms decompose, deeper coastal waters can become depleted of oxygen. This process also increases carbon dioxide concentrations in the water, which leads to further acidification in localized areas. Additionally, rains not only bring freshwater into the near shore waters, but other sources of carbon. All of these factors: nutrient pollution, low oxygen, and increased freshwater contribute to coastal acidification.

“Acidification, nutrient pollution and low oxygen may fundamentally change these coastal ecosystems. With these and other threats to our coasts, it is imperative that we build better tools for predicting these changes. These projections will inform decisions about fisheries management, protection of coral reefs, and agricultural practices,” said Dr. Libby Jewett. Within NOAA, the Ocean Acidification Program (OAP) and the National Centers for Coastal Ocean Science  are partnering to answer fundamental questions about how acidification will interact with other coastal stressors to impact marine resources. “These new projects expand the ability of coastal communities to better understand and respond to the very serious threat of acidification to the world's ocean, estuaries and Great Lakes" said Dr. Libby Jewett.

Chesapeake Bay
View of the Chesapeake Bay from above, including bathymetry, illustrating the deep central channels of the Bay (dark blue) and many shallow tributaries (yellow-orange). The project led by Dr. Testa at University of Maryland will focus on nutrient and carbon dynamics in both the deep, central basin, as well as the tributaries. Image credit: Jeremy Testa using Google Earth)

Understanding how these three stressors interact will allow for better informed marine resource and coastal land management. Dr. James McWilliams of the University of California Los Angeles and lead investigator for the California Current project explained that “The motivation is to understand the potential negative effects of low oxygen and acidification on the base of the food web in this highly productive ecosystem.  We are particularly interested in understanding how regional pollution management practices can have outcomes locally.” This research will help determine which areas of the California Current are particularly vulnerable to low oxygen and acidification.

In Texas, short term coastal acidification events have been noticed in the local estuaries. Researchers at Texas A&M University-Corpus Christi note that the events have become longer and longer. This research team, led by Dr. Paul Montagna at Texas A&M University Corpus Christi, will be investigating how drought and land use change affect coastal acidification. They will then use that information to predict how future acidification and changes in rain patterns will impact the estuarine ecosystems of Texas.

On the US east coast, Dr. Jeremy Testa is leading a project in the Chesapeake Bay focused on the Eastern oyster, one of the bay’s most economically and culturally important species. “Attempts to restore the Eastern oyster in Chesapeake Bay could be affected by future changes,” Testa said. “In this project we hope to understand what role oyster reefs play in the cycling of nutrients and carbon and how these cycles may help or harm the restoration of oyster reefs. We are also interested in discovering which regions of the bay are least vulnerable to acidification and might be ideal for oyster reef restoration.”

This research and the models developed from these projects will allow scientists to better understand acidification of our coastal waters driven by increasing atmospheric carbon dioxide and amplified by local processes.  With information about the drivers behind and projected impacts to different coastal ecosystems, coastal and land-based resource managers will have tools to better manage our valued coastal resources.


Number of views (7342)/Comments (0)

Please login or register to post comments.