Societal impacts and adaptation strategies

Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.


The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.

Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.

Figure from: Harvey et al. 2010

Ecosystem Modeling

Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.

How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.

Economic Projections

Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.

For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.


How can we adapt to our changing ocean? 

The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.







Turning current observations into forecasts is the key mechanism by which adaptation plans are created.

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.


NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.

Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats.  Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations.  In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters.   Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.


EXPLORE THE IOOS Pacific Region Ocean Acidification
Data portal

This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.


Why I put a pteropod in a CT scanner to study the impacts of ocean acidification

Why I put a pteropod in a CT scanner to study the impacts of ocean acidification

Tuesday, March 13th, 3pm EDT (12pm PDT)

During this webinar Rosie Oakes of the National Academy of Sciences of Drexel University discussed how she used a micro CT scanner to image pteropods in 3D to measure their shell thickness and volume. She will explain how she enlarges these 3D reconstructions to print them for educational purposes, and how you can do the same. Finally, she'll share her new research direction, using museum collections of pteropods to decipher how they have been affected by ocean acidification since the industrial revolution.

Wednesday, February 28, 2018
Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Marine Resources Advisory Council

The Washington state governor’s appointed board, the Marine Resources Advisory Council, released its first update in five years to the state’s coordinated response to ocean acidification. In the five years since the Blue Ribbon Panel’s report, there have been significant scientific advances and progress made on the 42 recommended actions. The report highlights the new research that justifies more concerted efforts to combat ocean acidification. The report is publicly available here

Eleven NOAA and Washington Sea Grant scientists from the National Ocean Service, National Marine Fisheries Service and the Office of Oceanic and Atmospheric Research served on the Blue Ribbon “Refresh” Panel and contributed to the report.

Photo Credit: NW Straits Commission

Wednesday, December 20, 2017
Research shows ocean acidification is spreading rapidly in the Arctic

Research shows ocean acidification is spreading rapidly in the Arctic

NOAA Oceanic and Atmospheric Research

Ocean acidification is spreading rapidly in the western Arctic Ocean in both area and depth, potentially affecting shellfish, other marine species in the food web, and communities that depend on these resources, according to new research published in Nature Climate Change by NOAA, Chinese marine scientists and other partners.

Tuesday, March 14, 2017
NOAA research links human-caused CO2 emissions to dissolving sea snail shells off U.S. West Coast

NOAA research links human-caused CO2 emissions to dissolving sea snail shells off U.S. West Coast


For the first time, NOAA and partner scientists have connected the concentration of human-caused carbon dioxide in waters off the U.S. Pacific coast to the dissolving of shells of microscopic marine sea snails called pteropods.

“This is the first time we’ve been able to tease out the percentage of human-caused carbon dioxide from natural carbon dioxide along a large portion of the West Coast and link it directly to pteropod shell dissolution,” said Richard Feely, a NOAA senior scientist who led the research appearing in Estuarine, Coastal and Shelf Science. “Our research shows that humans are increasing the acidification of U.S. West Coast coastal waters, making it more difficult for marine species to build strong shells.”

Wednesday, November 23, 2016


West Coast Ocean Acidification Cruise Blog

In the summer of 2013 NOAA conducted an in-depth ocean acidification investigation along the U.S. West Coast! Sailing from Seattle, WA to Moss Landing, CA, chemists and biologists on board NOAA Ship Fairweather sampled and analyzed water, alga and plankton in an effort to better understand how the marine ecosystem is responding to corrosive effects caused by changing ocean chemistry.

Acidification, which is driven by increases in human-caused fossil fuel burning, is particularly threatening West Coast waters given the region’s unique hydrology and large biological communities. Data from this cruise may help America's fishing industry and state and local officials can plan, prepare and protect its commercially-valuable ecosystems.

Thursday, August 29, 2013