DEVELOPING FORECASTS
HOW CAN WE ADAPT?

 

Societal impacts and adaptation strategies

Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.


ECONOMIC MODELING

The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.

Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.


Figure from: Harvey et al. 2010

Ecosystem Modeling

Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.

How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.


Economic Projections

Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.

For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.

 

How can we adapt to our changing ocean? 

The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.

 

 

FORECASTING

TECHNOLOGY

MANAGEMENT


FROM OBSERVATIONS TO FORECASTS

Turning current observations into forecasts is the key mechanism by which adaptation plans are created.

Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes.  By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.

 

NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.


TECHNOLOGY

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


MANAGEMENT TOOLS

Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.

Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats.  Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations.  In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters.   Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.

 

>

CONNECTING PEOPLE ACROSS REGIONS AND DISCIPLINES

Ocean acidification is a global challenge, and the most effective adaptation strategies are holistic, incorporating the knowledge and experiences of many sectors. As an answer to the difficulty of bridging geographic and professional divides, together with the Interagency Working Group on Ocean Acidification, NOAA helped launch the Ocean Acidification Information Exchange, an online community and discussion forum.

The OA Information Exchange is designed to make it easy  to connect and find information, with tools to post updates, share documents, media, links, and events with fellow members. The site welcomes scientists, educators, students, policy makers, members of industry, and concerned citizens to help fulfill the mission of building a well-informed community ready to respond and adapt to ocean and coastal acidification. If you would like to join the conversation, please request an account at oainfoexchange.org/request-account.html


EXPLORE THE IOOS Pacific Region Ocean Acidification
Data portal

This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.


OAP SUPPORTED Societal impact PROJECTS

Marine Scientist Position with focus on Ocean Acidification

State of Washington Department of Ecology

The Environmental Assessment Program (EAP) program within the Department of Ecology is looking to fill a Marine Scientist (Natural Resource Scientist 2) position. Applications are due April 24, 2018.

This position is located at our Headquarters Building in Lacey, WA but conducts work statewide. This position is responsible for conducting marine water quality monitoring, with a focus on ocean acidification. Responsibilities include implementing the addition of ocean acidification-relevant parameters to Ecology's marine waters monitoring program in Puget Sound. This position is also responsible for oceanographic sampling gear preparation and use, instrument calibration (CTD and other electronic sensors), laboratory sample analyses, data analysis, and report writing. The data collected is used to determine the status and trends of marine water quality in context to ocean acidification in Washington state.

More information [EasyDNNnewsLink|92]

Wednesday, April 11, 2018

The Olympic Coast as a Sentinel: An Integrated Social-Ecological Regional Vulnerability Assessment to Ocean Acidification

Jan Newton, University of Washington

The Olympic Coast, located in the Pacific Northwest U.S., stands as a region already experiencing effects of ocean acidification (OA). This poses risks to marine resources important to the public, especially local Native American tribes who are rooted in this place and depend on marine treaty-protected resources. This project brings together original social science research, synthesis of existing chemical and biological data from open ocean to intertidal areas, and model projections, to assess current and projected Olympic Coast vulnerabilities associated with OA. This critical research aims to increase the tribes’ ability to prepare for and respond to OA through respective community-driven strategies. By constructing a comprehensive, place-based approach to assess OA vulnerability, decision-makers in the Pacific Northwest will be better able to anticipate, evaluate and manage societal risks and impacts of OA. This collaborative project is developed in partnership with tribal co-investigators and regional resource managers from start to finish and is rooted in a focus on local priorities for social, cultural, and ecological health and adaptive capacity.

Friday, December 22, 2017
Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Marine Resources Advisory Council

The Washington state governor’s appointed board, the Marine Resources Advisory Council, released its first update in five years to the state’s coordinated response to ocean acidification. In the five years since the Blue Ribbon Panel’s report, there have been significant scientific advances and progress made on the 42 recommended actions. The report highlights the new research that justifies more concerted efforts to combat ocean acidification. The report is publicly available [EasyDNNnewsLink|80]. 

Eleven NOAA and Washington Sea Grant scientists from the National Ocean Service, National Marine Fisheries Service and the Office of Oceanic and Atmospheric Research served on the Blue Ribbon “Refresh” Panel and contributed to the report.

Photo Credit: NW Straits Commission

Wednesday, December 20, 2017

North Pacific Research Board's Request For Proposals Includes Ocean Acidification as a Research Priority

North Pacific Research Board 2018 RFP

The North Pacific Research Board (NPRB) announces the release of its Core Program Request for Proposals (RFP). The 2018 RFP has an anticipated funding amount of $4.45 million. The North Pacific Research Board specifically lists ocean acidification as a topic of interest for proposed projects. 


Thursday, October 12, 2017
Mukilteo scientist tries to discover why C02 is hurting oceans

Mukilteo scientist tries to discover why C02 is hurting oceans

HeraldNet

Shallin Busch is a Mukilteo-based ecologist whose research is linking ocean acidification to the deteriorating health of the Puget Sound ecosystem. The Mukilteo team has looked at or is looking at ocean acidification effects on krill, salmon, Dungeness crab, black cod and pteropod (marine snails). So far it has found that lower pH levels lead to lower survival and slower development rates, as well as changes in behavior. 
Wednesday, October 11, 2017
RSS
12