Ocean acidification is a threat to food security, economies, and culture because of its potential impacts on marine ecosystem services. Information on how ocean acidification will impact ecosystems and the services they provide can help guide how we adapt to and mitigate forecasted changes.
The OAP funds modeling studies to advance our understanding of the impacts of ocean acidification on coastal ecosystems and fisheries.
Scientists can use a wide variety of models to project the potential progression of acidification in different regions, the impacts that changes in chemistry may have on marine life, and how these changes could affect a variety of ecosystem services including fisheries, aquaculture, and protection of coasts by coral reefs. For example, projections of ocean acidification can be incorporated into food-web models to better understand how changing ocean chemistry could affect harvested species, protected species, and the structure of the food web itself. Economic-forecast models can be used to analyze the economic impacts of potential changes in fisheries harvest caused by ocean acidification.
Figure from: Harvey et al. 2010
Experiments on species response suggest that ocean acidification will directly affect a wide variety of organisms from calcifying shellfish and coral to fish and phytoplankton. Ecosystem models can capture the complex effects of ocean acidification on entire ecosystems.
How marine organisms respond to ocean acidification will be influenced by their reaction to chemistry change and their interactions with others species, such as their predators and prey. Scientists use ecosystem models to understand how ocean chemistry may affect entire ecosystems because they account for the complex interactions between organisms. Output from such modeling exercises can inform management of fisheries, protected species, and other important natural resources. Because ecosystem feedbacks are complex, understanding the uncertainty associated with these models is critical to effective management.
Projections of the economic impacts of ocean acidification can be created by combining economic models with findings from laboratory experiments and ecological models.
For example, these links can be made for port communities or specific fisheries through modeling changes in fish harvest. Researchers at the Alaska Fisheries Science Center have developed bio-economic forecasts for the economically and culturally important species red king crab. Researchers at the Northwest Fisheries Science Center are developing projections of how the economies of regional port communities might be altered by potential changes in West Coast fisheries caused by ocean acidification.
The NOAA Ocean Acidification Program (OAP) is working to build knowledge about how to adapt to the consequences of ocean acidification (OA) and conserve marine ecosystems as acidification occurs.
Turning current observations into forecasts is the key mechanism by which adaptation plans are created.
Forecasting provides insight into a vision of the future by using models that visualize how quickly and where ocean chemistry will be changing in tandem with an understanding of how sensitive marine resources and communities are to these changes. By making predictions about the future, we can better adapt and prepare for ocean acidification. Coastal forecasts for ocean acidification are currently being developed for the West Coast, Chesapeake Bay, the East Coast, Caribbean and the western Gulf of Mexico. Ocean acidification hotspots are areas that are particularly vulnerable, either from a biological, economic, or cultural perspective. Identification of these hot spots in coastal waters is a priority for the Coastal Acidification Networks (CANs), fostered by the Ocean Acidification Program around the country. These networks bring together scientists, decision makers, fishermen and other stakeholders to identify and answer the most important questions about acidification and its effects in the region.
NOAA scientists have played an important role in development of the J-SCOPE forecast system, used to create seasonal forecasts for the North Pacific region. These forecasts will allow fisheries managers to predict seasonal outlooks for management decisions.
Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally
Management strategies use information provided by research and tools that can be used to make sound decisions to effectively conserve marine resources. Baseline research about organism and community sensitivity to ocean acidification is incorporated into these strategies, in an effort to sustain these resources for the future.
Before management plans can be created it is necessary to have baseline research about the effects of ocean acidification on marine resources, such as Pacific oysters, Dungeness crabs and rockfish. The OAP funds NOAA Fisheries Science Centers to expose various life stages of valuable species to present and future acidification conditions. The biological response research is then incorporated into models that can be used to create tools for managers to use so that they can test different scenarios on species’ populations and habitats. Modeling efforts led by Woods Hole Oceanographic Institution are now being used to produce one of these tools for Atlantic sea scallop fisheries. The dashboard will allow managers to test the impacts of different management actions on scallop populations. In the Pacific Northwest, NOAA, the University of Washington, and shellfish industry scientists have formed a strong partnership to adapt to ocean acidification impacts that have already affected the shellfish industry. Together these researchers determined that acidification was threatening oyster production and offered an approach to address it. They installed equipment to monitor carbon chemistry at shellfish hatcheries and worked with hatchery managers to develop methods that protect developing oyster larvae from exposure to low pH waters. Early warning tools are now being used to forecast seasonal acidification conditions to enable shellfish growers to adapt their practices.
Ocean acidification is a global challenge, and the most effective adaptation strategies are holistic, incorporating the knowledge and experiences of many sectors. As an answer to the difficulty of bridging geographic and professional divides, together with the Interagency Working Group on Ocean Acidification, NOAA helped launch the Ocean Acidification Information Exchange, an online community and discussion forum.
The OA Information Exchange is designed to make it easy to connect and find information, with tools to post updates, share documents, media, links, and events with fellow members. The site welcomes scientists, educators, students, policy makers, members of industry, and concerned citizens to help fulfill the mission of building a well-informed community ready to respond and adapt to ocean and coastal acidification. If you would like to join the conversation, please request an account at oainfoexchange.org/request-account.html
This portal provides a real-time data stream of ocean acidification data that can be used by shellfish growers, regional managers, stakeholders and the public. The portal can be used to make resource decisions and build adaptation strategies.
Effects of OA on Alaskan and Arctic fishes: physiological sensitivity in a changing ecosystem
Why we care There is significant concern about ocean acidification disrupting marine ecosystems, reducing productivity of important fishery resources, and impacting the communities that rely upon those resources. To predict the ecological and socioeconomic impacts of acidification, it is critical to understand the complex interactions between environmental stressors of physiology and ecology of marine fishes. Previous work on Alaskan groundfish focused on direct physiological effects of OA on early life stages. We need to further this work to understand the interaction between OA and co-stressors like elevated temperatures on fish productivity.
What we are doing This AFSC project examines the interactive effects of OA and elevated temperatures on three fish species that are critical to Alaska and Arctic fisheries: Pacific cod, Arctic cod, and yellowfin sole. Laboratory experiments will track the impact of OA exposure on adult Arctic cod reproductive output, egg quality, and larval production. Further experiments will consider the potential for within-generation and trans-generational acclimation and adaptation to environmental changes. Risk assessments for regional fisheries will incorporate the data from this project.
Benefits of our work Findings from this research will provide the foundation necessary to evaluate the ecological and socioeconomic impacts of ocean acidification in Alaskan and Arctic waters.
Resiliency and sensitivity of marine fish to elevated CO2: osmoregulatory neurosensory behavioral and metabolic responses in salmon and sablefish
Why we care Elevated levels of marine carbon dioxide can disrupt how many marine fishes detect their environment, impairing their ability to respond appropriately to chemical, auditory, and visual cues. The mechanisms underlying differences in species sensitivity and resilience are poorly understood. This NWFSC project will explore the mechanisms underlying differences in carbon dioxide sensitivity between marine species that occupy habitats with different carbonate chemistries.
What we are doing We will compare regulatory capabilities and behavioral responses of sablefish and salmon to improve our understanding of how future fish populations may adapt to changing ocean chemistries. Our primary objectives are to build on existing OA infrastructure and previous research at the Northwest Fisheries Science Center to determine: 1) the mechanisms underlying sablefish resilience to low pH waters, and 2) the potential behavioral and physiological impacts of low pH exposure in pink and Chinook salmon.
Benefits of our work Pacific salmon and sablefish are key species in the marine ecosystems of the western United States. They are an integral part of the history, culture, and economy of the West Coast and Alaska. This research advances our understanding of impacts of OA on salmon and sablefish behaviors and sensory systems. Findings enable fishery managers and scientific partners to identify species, populations, and geographic areas of concern. Ultimately, project results will inform managers about the resiliency and sensitivity of salmon to OA and assist their efforts for conservation priorities.
Forecast effects of ocean acidification on Alaska crab and groundfish fisheries
Why we care Ocean acidification (OA) is a multi-disciplinary problem that requires a combination of methods from oceanography, fisheries science, and social science to assess socio-economic impacts. While OA impact models developed to date capture some sources of measurement uncertainty, more remains and limits the utility of models in decision making and research planning. A method is needed to quantify uncertainty relating the experimental design of OA experiments to the impacts of ocean pH and temperature on key model outcomes.
What we are doing The bioeconomic model developed under this project will be applied to forecasting long-term effects of OA on Eastern Bering Sea (EBS) crab, northern rock sole and Alaska cod. Also addressed in this project is the quantification of uncertainty for inclusion in the fisheries management process. The overall goal for this project is to forecast long-term effects of OA on abundance yields and fishery income. To this end, we will apply results from experiments and ocean monitoring/modeling to infer population-scale changes in juvenile growth and survival from OA.
Benefits of our work Through development of bioeconomic models for the EBS and Gulf of Alaska, we will be able to forecast the long-term effects of OA on northern rock sole and Alaska cod – a fish providing the vast majority of U.S. cod. These models make it possible to estimate abundance yields, fishery income, and economic impacts of OA on a national scale. The results from the project can assist with the development of experiments that will be most informative for bioeconomic modeling.
Using next-generation sequencing techniques to assess adaptive capacity and illuminate mechanisms underlying the effects of high pCO2 on Alaskan crab and fish species
Why we care Many economically important crab and fish species are negatively affected by exposure to ocean acidification predicted to occur throughout their ranges in the coming decades. Ocean acidification results in decreased growth, altered development, weaker exoskeletons, increased energy outputs, altered immune systems, altered behavior, and increased mortality in some of these species. Other stressors such as increased temperature can have interactive negative effects when combined with ocean acidification. Traditional laboratory experiments cannot duplicate the gradual changes that will affect species populations over multiple life-history stages and generations, so using next-generation genetic approaches provide insight into effects beyond specific life stages.
What we are doing This study will use next-generation sequencing techniques to identify specific alterations in the molecular, metabolic, and physiological pathways of individuals exposed to ocean acidification. This is a way to identify pathways that impart tolerance to ocean acidification and warming. This project determines the effect of ocean acidification and thermal stress on gene expression in Pacific cod larvae and juvenile Tanner crab and identifies genetic markers indicating ocean acidification resilience.
Benefits of our work Investigators will identify the cellular pathways that impart tolerance to ocean acidification. By comparing individuals that demonstrate low sensitivity to ocean acidification and with the general population, we enhance the ability to predict how adaptation will alter the species’ response to future ocean conditions. This research will inform the fishing industry and coastal, fisheries-dependent Alaskan communities about potential effects of ocean change on commercially important species. Outcomes can be used to drive future responses and adaptations in these industries regarding affected fisheries.