Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.
When the ocean absorbs carbon dioxide, chemical reactions create hydrogen ions that act like free agents, able to react with other compounds. Two ways we track ocean acidification are through pH and total alkalinity (TA). pH is a measure of how many free hydrogen ions are in the seawater. The more carbon dioxide in the ocean, the more these free agents are created, causing lower pH (more acidic).
The partial pressure of CO2 (pCO2) tells us how much carbon dioxide is in seawater. This information helps us understand ocean carbonate chemistry and biological productivity in the region. pCO2 increases when the ocean absorbs more CO2 from the atmosphere with elevated emissions.
Alkalinity is the ocean’s buffering system against increasing acidity. Total alkalinity is a measure of the concentration of buffering molecules like carbonate and bicarbonate in the seawater that can neutralize acid.
Dissolved inorganic carbon (DIC) tells us how much non-biological carbon is in seawater. Inorganic carbon comes in three main forms that we measure for DIC: carbon dioxide (CO2), bicarbonate (HCO3-), and carbonate (CO32-). Understanding DIC can help us determine the balance of carbonate forms in the ocean and the likelihood of ocean acidification.
There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.
Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.
Access our buoy data
Research cruises are a way to collect information about a certain ecosystem or area of interest.
For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.
Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.
The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).
Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.
This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.
NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.
These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.
Sea Grant announces a new funding opportunity for collaborative projects that address priority research needs to enhance our understanding of and address impacts to the American lobster fishery in the Gulf of Maine, Georges Bank, and southern New England.
The program seeks applications from research teams and encourages partnerships between industry, State agencies, and/or academia that address American lobster population dynamics, life history parameters (including temperature, ocean acidification or other changing climate conditions), species interactions and behavior, and/or social, behavioral, or economic research, including analyses regarding measures under consideration for inclusion in the Atlantic Large Whale Take Reduction Plan.
Read the full announcement
Applications must be submitted to Grants.gov by 11:59 p.m. ET, May 10, 2023.
The research will become part of the Wednesday, March 22, 2023
The Mid-Atlantic Sea Grant Programs in partnership with the NOAA Ocean Acidification Program, are pleased to announce the availability of Ocean Acidification Graduate Research Fellowships for a two-year period covering the 2018 and 2019 academic years. The fellowship is open to full-time graduate students at any academic institution in Delaware, Maryland, New Jersey, New York and Virginia who are engaged in coastal and marine research relevant to regional ocean, coastal, and estuarine acidification. The focus should be on improving understanding of the potential ecological consequences of increasing carbon dioxide concentration in regional coastal waters. Projects may encompass natural and/or social science research topics.
Proposals are being accepted through 5:00 pm ET on Friday, April 13, 2018 via [EasyDNNnewsLink|91].
This announcement and additional information can be found on each state Sea Grant program’s website.
Depending on appropriations, NOAA National Sea Grant College Program (NOAA Sea Grant) expects to have available a total of $7,000,000 to $11,500,000 across fiscal years 2018, 2019 and 2020 as part of the Sea Grant National Aquaculture Initiative (NAI). As part of the NAI, this competition is designed to foster the expansion of a sustainable U.S. ocean, coastal and Great Lakes aquaculture sector by addressing one or more of the following priorities: (a) supporting the development of emerging systems or technologies that will advance aquaculture in the U.S., including projects that will help stimulate aquaculture production by nascent industries; (b) developing and implementing actionable methods of communicating accurate, science based messages and information about the benefits and risks of U.S. marine aquaculture to the public; and (c) increasing the resiliency of aquaculture systems to natural hazards and changing conditions. Successful applications must describe projects that clearly address major constraints, barriers or hurdles limiting aquaculture production in the U.S. Complete proposals are due from eligible parties to Sea Grant programs on March 2, 2018 at 5 p.m. local time. Proposals from Sea Grant programs are due in grants.gov by March 30, 2018.
Interested applicant may obtain the full Federal Funding Opportunity announcement by visiting grants.gov opportunity number NOAA-OAR-SG-2018-2005489.
Applicants are strongly encouraged to reach out to their Sea Grant Program one to two months prior to the Sea Grant program
For Bill Mook, coastal acidification is one thing his oyster hatchery cannot afford to ignore.
Mook Sea Farm depends on seawater from the Gulf of Maine pumped into a Quonset hut-style building where tiny oysters are grown in tanks. Mook sells these tiny oysters to other oyster farmers or transfers them to his oyster farm on the Damariscotta River where they grow large enough to sell to restaurants and markets on the East Coast.