Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.
When the ocean absorbs carbon dioxide, chemical reactions create hydrogen ions that act like free agents, able to react with other compounds. Two ways we track ocean acidification are through pH and total alkalinity (TA). pH is a measure of how many free hydrogen ions are in the seawater. The more carbon dioxide in the ocean, the more these free agents are created, causing lower pH (more acidic).
The partial pressure of CO2 (pCO2) tells us how much carbon dioxide is in seawater. This information helps us understand ocean carbonate chemistry and biological productivity in the region. pCO2 increases when the ocean absorbs more CO2 from the atmosphere with elevated emissions.
Alkalinity is the ocean’s buffering system against increasing acidity. Total alkalinity is a measure of the concentration of buffering molecules like carbonate and bicarbonate in the seawater that can neutralize acid.
Dissolved inorganic carbon (DIC) tells us how much non-biological carbon is in seawater. Inorganic carbon comes in three main forms that we measure for DIC: carbon dioxide (CO2), bicarbonate (HCO3-), and carbonate (CO32-). Understanding DIC can help us determine the balance of carbonate forms in the ocean and the likelihood of ocean acidification.
There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.
Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.
Access our buoy data
Research cruises are a way to collect information about a certain ecosystem or area of interest.
For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.
Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.
The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).
Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.
This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.
NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.
These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.
There is a significant need to strengthen capacity for research, monitoring, and adaptive solutions for ocean acidification resilience and associated multi-stressors in the Caribbean region. The Caribbean Ocean Acidification Community of Practice (CoP) endeavors to explore the impacts of ocean acidification on important ocean and coastal areas, such as coral reefs, ecosystem and human health, and socio-economic activities within the region. Other efforts by NOAA and partners in the region are to stand up a Caribbean Coastal Acidification Network (CAN) and create a GOA-ON Hub.
To determine the needs of the local communities, the CoP is working with The Ocean Foundation to facilitate a Needs Based Assessment Survey. The goal of the survey is to better inform policymakers and funding agencies in the region about OA and identify pathways for long-standing community structures such as a Coastal Acidification Network and GOA-ON Hub. This survey also helps self-identify leaders within the communities to carry these efforts forward. The survey will be open until April 21, 2023. The CoP aims to report on survey results via email and at local conferences (i.e. AMLC Meeting in St. Kitts May 22-26, 2023). If you have any questions about the survey, please contact Alexis Valauri-Orton (avalauriorton@oceanfdn.org).
Sea Grant announces a new funding opportunity for collaborative projects that address priority research needs to enhance our understanding of and address impacts to the American lobster fishery in the Gulf of Maine, Georges Bank, and southern New England.
The program seeks applications from research teams and encourages partnerships between industry, State agencies, and/or academia that address American lobster population dynamics, life history parameters (including temperature, ocean acidification or other changing climate conditions), species interactions and behavior, and/or social, behavioral, or economic research, including analyses regarding measures under consideration for inclusion in the Atlantic Large Whale Take Reduction Plan.
Read the full announcement
Applications must be submitted to Grants.gov by 11:59 p.m. ET, May 10, 2023.
The research will become part of the Wednesday, March 22, 2023
The DFO-NOAA Ocean Acidification Steering Committee is pleased to announce the kickoff of the next round of funding to support projects/activities that help to advance our collaborative efforts. As with the previous round, there is $50K USD and $50K CAD set aside, and the focus will be on supporting students, post-docs, and early career scientists.
Funding Opportunity Details and Application Instructions
The deadline to submit proposals is February 15, 2023, sent to Alyssa Dunbar (Alyssa.dunbar@dfo-mpo.gc.ca) and Alex Puritz (Alexandra.puritz@noaa.gov). Contact them with questions.
Announcing a position at NERACOOS as the Climate and Ecosystems Coordinator. The two primary responsibilities will be coordinating the Northeast Coastal Acidification Network (NECAN) and the Ocean Acidification Information Exchange (OAIE), with time reserved to develop new work related to OA, HABs, and other emerging issues.
Position Details and Requirements HERE
Applying Instructions: Submit CV, 1-page cover letter, and contact information for three professional references as a PDF to Rob Cardeiro (rob@neracoos.org). The search committee will review applications beginning February 1, 2023, and will continue until the position is filled.