BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Latest Science Updates to the 2012 WA State Blue Ribbon Panel Report

Marine Resources Advisory Council

The Washington state governor’s appointed board, the Marine Resources Advisory Council, released its first update in five years to the state’s coordinated response to ocean acidification. In the five years since the Blue Ribbon Panel’s report, there have been significant scientific advances and progress made on the 42 recommended actions. The report highlights the new research that justifies more concerted efforts to combat ocean acidification. The report is publicly available [EasyDNNnewsLink|80]. 

Eleven NOAA and Washington Sea Grant scientists from the National Ocean Service, National Marine Fisheries Service and the Office of Oceanic and Atmospheric Research served on the Blue Ribbon “Refresh” Panel and contributed to the report.

Photo Credit: NW Straits Commission

Wednesday, December 20, 2017
New Video on Ocean Acidification: Salmon and the Puget Sound

New Video on Ocean Acidification: Salmon and the Puget Sound

Tiffany Grunzel, University of Washington Communications Leadership Program

Ocean acidification could have deep impacts for salmon in the Puget Sound. 

Tiffany Grunzel from the University of Washington Communications Leadership program, interviews Dr. Shallin Busch (NOAA), Dr. Chase Williams (UW), and Robert Purser Jr. (Susquamish Fisheries) about the direct and indirect impacts of ocean acidification on salmon and what this could mean for tribal culture and the seafood industry.

A link to the video can be found [EasyDNNnewsLink|79]

Saturday, December 16, 2017
Categories: OA News
Oysters on acid: How the ocean's declining pH will change the way we eat

Oysters on acid: How the ocean's declining pH will change the way we eat

The New Food Economy

The ocean is changing faster than it has in the last 66 million years. Now, Oregon oysters are being farmed in Hawaii. That fix won’t work forever. 

A little more than ten years ago, a mysterious epidemic wiped out baby oyster populations. After two years of massive losses and no answers, scientists testing the waters discovered what was really wrong: the ocean water flowing into the hatcheries had changed, and the oysters weren’t able to build their shells. 

Check out the full [EasyDNNnewsLink|77] by H. Claire Brown, The New Food Economy, 28 November 2017.

Saturday, December 2, 2017
Mukilteo scientist tries to discover why C02 is hurting oceans

Mukilteo scientist tries to discover why C02 is hurting oceans

HeraldNet

Shallin Busch is a Mukilteo-based ecologist whose research is linking ocean acidification to the deteriorating health of the Puget Sound ecosystem. The Mukilteo team has looked at or is looking at ocean acidification effects on krill, salmon, Dungeness crab, black cod and pteropod (marine snails). So far it has found that lower pH levels lead to lower survival and slower development rates, as well as changes in behavior. 
Wednesday, October 11, 2017
Study predicts decline in Dungeness crab from ocean acidification

Study predicts decline in Dungeness crab from ocean acidification

The Seattle Times

Dungeness crab are forecast to take a hit from ocean acidification driven by fossil- fuel combustion, according to a study released this past week. Though the populations of the Dungeness crab fluctuate year by year, their overall abundance by 2063 could be about 30 percent lower, according to federal fishery biologist Issac Kaplan, a co-author of the study, “We think that there will be a moderate decline in a species that is really economically important,” said Kaplan of the Dungeness, which were valued at some $220 million during the 2013 West Coast commercial season. Read more

Wednesday, January 18, 2017
RSS