BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


What do we measure to assess ocean acidification? 

The Big Four OA Parameters

pH

When the ocean absorbs carbon dioxide, chemical reactions create hydrogen ions that act like free agents, able to react with other compounds. Two ways we track ocean acidification are through pH and total alkalinity (TA). pH is a measure of how many free hydrogen ions are in the seawater. The more carbon dioxide in the ocean, the more these free agents are created, causing lower pH (more acidic).

pCO2

The partial pressure of CO2 (pCO2) tells us how much carbon dioxide is in seawater. This information helps us understand ocean carbonate chemistry and biological productivity in the region. pCO2 increases when the ocean absorbs more CO2 from the atmosphere with elevated emissions.

TA

Alkalinity is the ocean’s buffering system against increasing acidity. Total alkalinity is a measure of the concentration of buffering molecules like carbonate and bicarbonate in the seawater that can neutralize acid. 

DIC

Dissolved inorganic carbon (DIC) tells us how much non-biological carbon is in seawater. Inorganic carbon comes in three main forms that we measure for DIC: carbon dioxide (CO2), bicarbonate (HCO3-), and carbonate (CO32-). Understanding DIC can help us determine the balance of carbonate forms in the ocean and the likelihood of ocean acidification.

Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Evaluating impacts of acidification on biological processes in the Gulf of Mexico

Evaluating impacts of acidification on biological processes in the Gulf of Mexico

Leticia Barbero - NOAA CIMAS, University of Miami

Evaluation of OA impacts to plankton and fish distributions in the Gulf of Mexico during GOMECC-4 with a focus on HAB-interactions

Why we care
Ocean change in the Gulf of Mexico, including acidification and eutrophication, can impact biodiversity and the flow of energy through ecosystems from microscopic phytoplankton to higher trophic levels like fish. These processes can impact the health of fisheries and coastal ecosystems. This project collects information to evaluate the links between ocean conditions and important species in the Gulf of Mexico. 

What we are doing
During the 4th Gulf of Mexico Ecosystem and Carbon Cruise (GOMECC-4), scientists collect samples of phytoplankton, zooplankton, and ichthyoplankton to characterize fish distribution and abundance, larval fish condition and diet, microplastic abundance, and harmful algal bloom species. These collections coincide with measurements of acidification, oxygen, and eutrophication to make connections between ocean chemistry and biology.

Benefits of our work
This project will help characterize how changes in ocean conditions interact with biological processes like harmful algal bloom formation and ecosystem productivity that are important to local fisheries and stakeholders.


Wednesday, August 31, 2022

Flexing mussels: Does Mytilus edulis have the capacity to overcome effects of Ocean Acidification?

Dianna K Padilla, Stony Brook University

We are likely to see "winners", those species or individuals that are most resilient in the face of climate change, and "losers" those species or individuals that are least capable of robust performance under stressful conditions.  At present, we cannot predict winners and losers, and do not know whether responses to environmental stress are primarily driven by phenotypic plasticity, broad performance under different environmental conditions, or if there are genetic or epigenetic factors that can result in cross-generational directional changes in populations, resulting in more resilience under stressful conditions of OA.   This project has two objectives: 

1)  To test for cross-generational adaptation to the impacts of increasing ocean acidification on blue mussels, either through phenotypic acclimation or through heritable changes. 

2)  To determine if there are tradeoffs in growth and development across life stages in response to stress induced by ocean acidification in blue mussels.\

The results of our experiments can then be used to develop management practices for wild populations and more robust aquaculture practices for blue mussels. From an aquaculture perspective, if animals from certain source populations are more resilient to OA stress, those locations could be targeted for collection of wild seed that will produce resilient mussels in aquaculture leases.  Furthermore, the environmental characteristics of these advantageous site(s) could then be characterized to predict other sites that may also produce resilient mussels.  Overall, the data obtained from this proposed work could be used to enhance mussel culture, an economically important activity of growing importance in our region.

Wednesday, January 25, 2017
Categories: Projects

Sensitivity of larval and juvenile sand lance Ammodytes dubius on Stellwagen Bank to predicted ocean warming, acidification, and deoxygenation

Hannes Baumann, University of Connecticut

This proposal will quantify the sensitivity of a key forage fish in the Northwest Atlantic to the individual and combined effects of the major factors comprising the ocean climate change syndrome: warming, acidification, and deoxygenation. We will rear embryos of Northern sand lance Ammodytes dubius, obtained by strip-spawning wild adults from the Stellwagen Bank National Marine Sanctuary (SBNMS) through larval and early juvenile stages in a purpose- built factorial system at different factorial combinations of temperature, CO2 and oxygen.

Our first objective is to quantify individual and combined effects of temperature × CO2 (year 1) and temperature × CO2 × DO (year 2) on A. dubius growth and survival. We hypothesize that warming in combination with high CO2 (low pH)  will have additive or synergistically negative effects, whereas the addition of low DO as a third stressor will have stark, synergistically negative effects on all traits. Our second objective is to characterize the swimming behavior of A. dubius larvae that have been reared under combinations of elevated temperature × CO2. We hypothesize that combined stressors will have synergistically negative effects on the development of larval sensory systems, which express themselves and can thus be quantified as changes in larval swimming behavior. Our third objective is to take advantage of the rare winter sampling activities for this project to quantify CO2, pH, and DO variability in benthic waters on Stellwagen Bank through bottle collections and short-term sensor deployments. We hypothesize that bottom water pH and DO levels during the sand lance spawning season might be routinely lower than levels in surface waters.

Wednesday, January 25, 2017
Categories: Projects

Probing molecular determinants of bivalve resilience to ocean acidification

Bassem Allam, Stony Brook University

The overall aim of this proposal is to identify molecular mechanisms and markers that segregate "Winners" from "Losers" in three regionally-important bivalve species. The proposed research will identify molecular markers and mechanisms associated with resilience to acidification in some of the most important bivalve species along the east coasts: the eastern oyster (Crassostrea virginica), the hard clam (Mercenaria mercenaria), and the blue mussel Mytilus edulis. Furthermore, identified genetic markers will be validated with the aim of providing the aquaculture industry with tools needed to produce superior crops.

We have three specific objectives:   

(1) To identify molecular processes involved in bivalve resilience to ocean acidification and to characterize genetic markers associated with resilience 

 (2) To  validate  the  ability  of  identified  markers  to  predict resilience towards acidification  

(3)   To determine the physiological cost of resilience   

This research has major implications for basic and applied science. It will determine molecular and physiological mechanisms and pathways involved in bivalve natural resilience to acidification and identify molecular features associated with resilience. This information is greatly needed for the management of wild fisheries and for the development of resilient varieties of aquacultured stocks. Resilient broodstocks will provide the industry with superior germline to face current and projected episodes of acidification in local waters.

Wednesday, January 25, 2017
Categories: Projects

Genetic and phenotypic response of larval American lobster to ocean warming and acidification across New England’s steep thermal gradient

Dr. Richard Wahle & Dr. David Fields, University of Maine & Bigelow Laboratory for Ocean Sciences

Co-PI's Wahle (UMaine) and Fields (Bigelow Laboratory) join Co-investigator Greenwood (UPEI) in this US-Canadian collaboration. The proposed study is designed to fill knowledge gaps in our understanding of the response of lobster larvae to ocean warming and acidification across lobster subpopulations occupying New England’s steep north-south thermal gradient. The research involves a comprehensive assessment of the physiological and behavioral response of lobster larvae to climate model-projected end-century ocean temperature and acidification conditions. We will address the following two primary objectives over the 2-year duration of the proposed study:

(1)  To determine whether projected end-century warming and acidification impact lobster larval survival, development, respiration rate, behavior and gene expression; and

(2)  To determine whether larvae from southern subpopulations are more resistant than larvae from northern populations to elevated temperature and pCO2.

Wednesday, January 25, 2017
Categories: Projects
RSS
12