BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

New NOAA Research Strategy for Carbon Dioxide Removal

Join the Listening Sessions

Help guide NOAA's role in exploring Carbon Dioxide Removal (CDR) research as a way to mitigate climate change. NOAA invites the public to read the draft CDR research strategy to review all 11 carbon dioxide removal techniques and strategies, evaluate NOAA’s proposed role in carbon dioxide removal research and provide comments (a Federal Register Notice with instructions for submitting comments will be published shortly). This document was developed by the National Oceanic and Atmospheric Administration (NOAA) Carbon Dioxide Removal Task Force (CDR Task Force), a cross-NOAA interdisciplinary team with relevant expertise in climate and carbon, coastal and open ocean science, aquaculture development, and ocean conservation.


Join us at one of the listening sessions to provide your input to NOAA. REGISTER for free.

Virtual listening sessions will be held:

  • Monday, Dec 12 at 3 PM ET
  • Wednesday, Dec 14 at 10 AM ET
  • Wednesday, Dec 14 at 5 PM ET

View the PRESS RELEASE

 

Thursday, December 1, 2022

Announcing Funding Opportunity in Marine Carbon Dioxide Removal (mCDR)

Call for Proposals

The NOAA Ocean Acidification Program on behalf of the National Oceanographic Partnership Program (NOPP) solicits proposals focused on (a) expanding understanding of various aspects of marine Carbon Dioxide Removal (mCDR); (b) understanding associated co-benefits (including ocean acidification mitigation) and risks of marine CDR; and (c) the science needed to build building regulatory frameworks for both testing and scaling of marine CDR approaches. This knowledge will assist in the verification or invalidation of hypotheses regarding mCDR, in order to make informed decisions regarding a potential scaled negative carbon ocean industry. 

To be eligible under this NOPP funding opportunity, each proposing team must comprise participants from at least two of the following sectors: academia, private sector (including Non-Governmental Organizations, or NGOs), or government (including federal, tribal, state, and local). Participants in this multi-agency request for proposals include: NOAA (Ocean Acidification Program, Global Ocean Monitoring and Observing Program, US Integrated Ocean Observing System/US IOOS), the Department of Energy (Fossil Energy and Carbon Management, Water Power Technologies Office), Department of Navy (Office of Naval Research), the National Science Foundation (Chemical Oceanography Program) and philanthropies including ClimateWorks. 

To facilitate cross-sectoral networking and the formation of new partnerships, our NOFO partners, ClimateWorks Foundation has created a networking resource for individuals who are leading proposals and seeking new partnerships as well as individuals interested in participating in a proposal and being discoverable.

See here for more network details: http://tinyurl.com/NOPPmCDRnetwork.
This form produces a publicly available spreadsheet.

View the FULL NOTICE OF FEDERAL FUNDING

An informational webinar will be held on December 7, 2022 at 4-5pm ET. REGISTER HERE (SLIDES ATTACHED)

 

Wednesday, November 23, 2022

Sixth Report on Federally Funded Ocean Acidification Monitoring and Research

Advancing Ocean Acidification Research and Monitoring

The Interagency Working Group on Ocean Acidification of the National Science and Technology Council’s Subcommittee on Ocean Science and Technology released their Sixth Report on Federally Funded Ocean Acidification Research and Monitoring Activities. The report highlights a range of research activities from measuring where and when ocean acidification occurs, understanding the impact of ocean and coastal acidification on ecosystems and communities, to identifying potential ocean-based climate solutions. The report included projects that advance observations and modeling of ocean carbon, test new technology developments, study potential socioeconomic impacts of ocean acidification, and conduct public education and outreach. Collectively, this research provides important insights that will enable managers and communities to better anticipate and respond to ocean and coastal acidification.

White House Announcement

Link to Report

Tuesday, November 1, 2022
NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research

NOAA Invests in Harmful Algal Bloom and Ocean Acidification Research

NOAA invests $18.9M in a coordinated effort to maximize advances in harmful algal bloom (HAB) mitigation, monitoring and forecasting. Four of new research awards support ($1.5M) funded in partnership by NOAA’s National Centers for Coastal Ocean Science (NCCOS) and NOAA’s Ocean Acidification program will determine interactive effects of HABs and ocean acidification. Other projects supported through this effort will establish a U.S. Harmful Algal Bloom Control Incubator, enhance detection of HAB toxins and improve forecasts and investigate the socioeconomic impacts of HABs. Read more

Project Highlights

University of MichiganUniversity of Minnesota DuluthOberlin CollegeUniversity of Kentucky, and University of Toledo received $281,975 to improve our understanding of the synergistic impacts of acidification, temperature, total alkalinity, and nutrients on toxic cyanobacteria harmful algal blooms in the Great Lakes. 

Woods Hole Oceanographic InstituteBowdoin College, and NERACOOS received $499,999 to address gaps in understanding relationships between harmful algal bloom behavior and ocean acidification in the northeast Atlantic, especially where it is associated with coastal eutrophication and hypoxia.

Stony Brook UniversityAdelphi University, and St. Joseph's College received $364,265 to establish a comprehensive understanding of how three of the most prominent HABs on the US east coast respond to ocean acidification, and how their co-occurrence will economically impact fisheries and shellfisheries. 

Northwest Indian CollegeSan Francisco State University, and University of Washington received $355,281 to understand the current relationships between ocean acidification and harmful algal bloom interactions in the Salish Sea, and to quantify how ocean acidification influences growth and toxicity. 

📸 Autonomous glider collects information to track harmful algal blooms and water quality. Credit: Ben Yair Raanan, MBARI


Wednesday, October 19, 2022
Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023

Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023

NOAA OAP convenes community meeting in San Diego, CA!

Every three years, the NOAA Ocean Acidification Program convenes researchers, communicators and others in the OA community for a meeting to discuss and share the latest research and future needs and directions. We want your participation! Registration is free.

Meeting Goals

  • Shape the future strategic direction of the OAP

  • Inform community members of recent OAP-supported efforts

  • Foster collaborations within the OA research community

  • Identify critical research gaps and efforts to address them

  • Highlight and discuss diversity, equity, inclusion, accessibility, and justice in OA research and our community

Find more details and register HERE.

Wednesday, September 28, 2022
RSS
123456