Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.
There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.
Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.
Access our buoy data
Research cruises are a way to collect information about a certain ecosystem or area of interest.
For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.
Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.
The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).
Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.
This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.
NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.
These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.
Evaluation of OA impacts to plankton and fish distributions in the Gulf of Mexico during GOMECC-4 with a focus on HAB-interactions
Why we care Ocean change in the Gulf of Mexico, including acidification and eutrophication, can impact biodiversity and the flow of energy through ecosystems from microscopic phytoplankton to higher trophic levels like fish. These processes can impact the health of fisheries and coastal ecosystems. This project collects information to evaluate the links between ocean conditions and important species in the Gulf of Mexico.
What we are doing During the 4th Gulf of Mexico Ecosystem and Carbon Cruise (GOMECC-4), scientists collect samples of phytoplankton, zooplankton, and ichthyoplankton to characterize fish distribution and abundance, larval fish condition and diet, microplastic abundance, and harmful algal bloom species. These collections coincide with measurements of acidification, oxygen, and eutrophication to make connections between ocean chemistry and biology.
Benefits of our work This project will help characterize how changes in ocean conditions interact with biological processes like harmful algal bloom formation and ecosystem productivity that are important to local fisheries and stakeholders.
PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)
Why we care Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.
What we are doing The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection.
Benefits of our work This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.
Assessing ecosystem responses of Gulf of Mexico coastal communities to ocean acidification using environmental DNA
Why we care Recent efforts to monitor ocean acidification in the Gulf of Mexico via the Gulf of Mexico Ecosystems and Carbon Cycle (GOMECC) cruises have revealed spatial differences in ocean acidification. While we know that ocean acidification negatively impacts many species and exacerbates the effects of oxygen limitation and harmful algal blooms, there is little work to monitor or predict the effects of ocean acidification on biodiversity. This project employs cutting-edge technology using environmental DNA to assess biodiversity in different conditions in the Gulf of Mexico region.
What we are doing Every organism sheds DNA. This project analyzes environmental DNA (eDNA), which is free-floating or microscopic DNA found in seawater, collected during the 4th GOMECC cruise, to identify biodiversity of bacteria, plankton, and fish in the Gulf of Mexico. eDNA will be compared to ocean properties to draw conclusions about drivers of biodiversity.
Benefits of our work Links between eDNA, ocean acidification, and other ocean properties will provide a deeper understanding of environmental drivers of biodiversity. These relationships can inform predictions of biodiversity patterns and guide the management of key habitats in the Gulf of Mexico, and help us adapt to changing ocean conditions.
Ocean Acidification on a Crossroad: Enhanced Respiration, Upwelling, Increasing Atmospheric CO2, and their interactions in the northwestern Gulf of Mexico
Why we care In the coastal ocean, local drivers such as nutrient input and physical oceanographic changes impact the magnitude of short-term variations and long-term trends in ocean acidification. The Gulf of Mexico’s coral reefs and banks are ecologically sensitive to changing ocean chemistry. Decadal acidification has been observed in the Northwestern Gulf of Mexico, linked more strongly to biological production of carbon dioxide than uptake of human-emitted carbon dioxide. Whether the observed acidification in this region represents a short-term phenomenon or a long-term trend is unknown. This project maintains critical ocean acidification monitoring in a region with impacted habitats and species.
What we are doing This project will test the hypothesis that enhanced atmospheric carbon dioxide, nutrient input, and upwelling will cause the continental shelf-slope region in the Northwestern Gulf of Mexico to acidify faster than other tropical and subtropical seas. The research team will incorporate observations from new large-scale surveys into oceanographic and statistical models that predict variation in ocean acidification over space and time.
Benefits of our work The outcomes of this project will meet the long-term goal of optimizing ocean acidification monitoring in the Northwestern Gulf of Mexico and will document methodology that can be used in similar efforts in the future. This project will examine an area in the poorly understood Gulf of Mexico Large Marine Ecosystem, produce the first ever high-resolution dataset in surface and subsurface waters, and direct the future deployment of in-situ monitoring devices in this ecologically and economically important region.
Why we care Long-term observations of carbonate chemistry at U.S.-affiliated coral reef sites are critical to understanding the impact of ocean acidification (OA) on coral ecosystems over time. The NOAA Coral Reef Conservation Program (CRCP) brings together scientists across NOAA to conduct sustained coastal ocean observations of biological climate and socioeconomic indicators in 10 priority U.S. coral reef areas.
What we are doing This project will provide high-quality carbonate chemistry data at a newly established National Coral Reef Monitoring Plan (NCRMP) monitoring site in Fagatele Bay, American Samoa. Using an interdisciplinary approach, scientists will collect, process, analyze, and steward continuous ocean acidification data. Observations of the carbonate system, the ocean’s buffering system, will be collected via a Moored Autonomous pCO2 (MApCO2) buoy providing freely-available high-quality carbon dioxide data that can then be used by project collaborators and partners to further research.
Benefits of our work The outcomes generated from this monitoring project will advance our understanding of the carbon cycle of coral reefs in American Samoa and the impacts to coral ecosystems. Ocean acidification data will help elucidate the natural biogeochemical influences at reefs, and can be used to determine if the magnitude of acidification occurring in the open ocean is also occurring on coral reefs.