BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

High-resolution ocean-biogeochemistry modeling for the East and Gulf coasts of the U.S.

Sang-ki Lee, AOML

Analysis of the data collected during the first (2007) and the second (2012) Gulf of Mexico and East Coast Carbon (GOMECC) cruises showed measurable temporal pH and aragonite saturation state (ΩAr) changes along the eight major transects. However, it is challenging to determine how much of this temporal change between the two cruises is due to ocean acidification and how much is due to variability on seasonal to interannual scales. Indeed, the expected 2% average decrease in ΩAr due to increasing atmospheric CO2 levels over the 5-year period was largely overshadowed by local and regional variability from changes in ocean circulation, remineralization/respiration and riverine inputs (Wanninkhof et al., 2015). Therefore, in order to provide useful products for the ocean acidification (OA) research community and resource managers, it is important to filter out seasonal cycles and other variability from the multi-annual trend. Here, we propose to use a high-resolution regional ocean-biogeochemistry model simulation for the period of 1979 - present day (real-time run) to fill the temporal gap between the 1st and 2nd GOMECC cruise data. In addition we will fine-tune and validate the model by using extensive surface water pCO2 observations from the ships of opportunity in the coastal region (SOOP-OA), and using the carbon observations from the East Coast Ocean Acidification Cruises (ECOA-1) and OAP mooring stations and from remotely sensed data. Then, we will use the real-time model run to estimate the 5-year trends (2012 – 2007) of OA and the carbon and biogeochemical variables along the East and Gulf coasts of the U.S. We will also examine the future OA variability in the East and Gulf coasts of the U.S. by downscaling the future climate projections under different emission scenarios developed for the IPCC-AR5. Based on the results obtained from the proposed model simulations, we will contribute to an observational strategy suitable for elucidating multi-annual trend of carbon and biogeochemical variables along the East and Gulf coasts of the U.S.

Wednesday, November 16, 2016
Categories: Projects

Ship of Opportunity work in support of OA monitoring (SOOP-OA)

Leticia Barbero & Rik Wanninkhof, AOML

NOAA operates the largest ship of opportunity (SOOP) effort for surface CO2 observations in the world. The objective of the ocean acidification (OA) monitoring effort in the coastal ocean on NOAA fisheries ships Gordon Gunter and Henry B. Bigelow is to obtain data for a data-based ocean acidification product suite for the East Coast and Gulf Coast. The ship of opportunity (SOOP) in support of OA monitoring (SOOP-OA) is in direct response to the needs expressed in the NOAA OA strategic plan, national and international program documentation, to understand how the rates and magnitude of acidification will vary across time and space, as a consequence of local and regional geochemical, hydrological, and biological variability and trends. The core of understanding rests upon monitoring the carbon system and related physical and biogeochemical parameters that are used to characterize the state of the coastal ocean in the project area. 

The NOAA fisheries ships Gunter and Bigelow provide regular cruise tracks used in stock assessments such that over time correlations and causality can be obtained between OA and fisheries interests. The repeatability also provides good snapshots of change. As there are robust correlations between surface CO2 levels and remotely sensed parameters, these data are critical for the mapping of OA parameters. The development of algorithms to perform this mapping is done from support measurements on the SOOP-OA, other SOOP data under our purview, and from the dedicated research cruises.

Wednesday, November 16, 2016
Categories: Projects

GOMECC-3

Leticia Barbero, AOML

Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics. 

The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area. The GOMECC research cruises have now been divided into two cruises, one focused on the east coast, the “East Coast Ocean Acidification” (ECOA) cruise and the other covering the Gulf of Mexico, the “Gulf of Mexico Ecosystems and Carbon Cycle” (GOMECC) cruise.

 

Wednesday, November 16, 2016
Categories: Projects

OA products for the Gulf of Mexico and East Coast

Ruben van Hooidonk and Rik Wanninkhof, AOML

Dedicated research cruises are used to obtain subsurface measurements and a comprehensive suite of biogeochemical observations to gain a process level understanding of OA. OAP provides funds to carry out the Gulf of Mexico and East Coast Carbon (GOMECC) research cruises every 5 years. These cruises provide a data set of unprecedented quality of physical and chemical coastal ocean parameters that is used both for improved spatial understanding of OA and also to provide a general understanding of changing patterns over time by comparison with previous cruises. The monitoring component is an essential part of the OAP, providing a long-term assessment of changes of biogeochemistry and ecology in response to increasing CO2 atmospheric levels and large-scale changes in coastal dynamics.

The climate quality data from the research cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and contribute to a long-term record of dynamics and processes controlling OA on the coastal shelves. The data are used for validation measurements of autonomous assets, applying the data for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area.

Wednesday, November 16, 2016
Categories: Projects

Evaluation of New Subsurface Carbon Technologies for OA Moorings

Adrienne Sutton and Chris Sabine, NOAA Pacific Marine Environmental Laboratory

The PMEL Carbon Group has been augmenting and expanding high-frequency observations on moorings to provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily to inter-annual cycles. The current NOAA Ocean Acidification Observing Network (NOA-ON) consists of 21 moorings in coral, coastal, and open ocean environments. At present, the OA mooring network includes a standardized suite of surface sensors measuring for air and seawater partial pressure of CO2 (pCO2), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites. Although OA is primarily driven by uptake of CO2 from the atmosphere, many coastal and estuarine processes that affect water chemistry and the interpretation of coastal OA are manifested in subsurface waters. Furthermore, many of the most sensitive organisms (e.g. corals, shellfish) are benthic and respond to subsurface water chemistry. 

The Moored Autonomous pCO2 (MAPCO2) systems currently used on the 21 OA moorings are uniquely adapted for surface only measurements. PMEL has demonstrated these MAPCO2 systems are compatible with and comparable to ship-based underway pCO2 systems and discrete validation measurements used in the NOA-ON.  However, similar standardized methods and technologies have not been evaluated for subsurface observations on the existing mooring network. Our project evaluates the best carbon system technologies to deploy in the subsurface, demonstrate the utility of these enhanced observations on the moorings, and make recommendations on how advanced technologies can be incorporated into the NOA-ON.

Wednesday, November 16, 2016
Categories: Projects
RSS
1234567