BUOYS & MOORINGS
SHIP SURVEYS
GLIDERS
SHIPS OF OPPORTUNITY
CORAL REEF MONITORING

 

MONITORING

Understanding the exposure of the nation’s living marine resources such as shellfish and corals to changing ocean chemistry is a primary goal for the NOAA OAP. Repeat hydrographic surveys, ship-based surface observations, and time series stations (mooring and ship-based) in the Atlantic, Pacific, and Indian Oceans have allowed us to begin to understand the long-term changes in carbonate chemistry in response to ocean acidification.


Buoys & Moorings

There are currently 19 OAP-supported buoys in coastal, open-ocean and coral reef waters which contribute to NOAA's Ocean Acidification Monitoring Program, with other deployments planned.

Currently, there are two types of floating devices which instruments can be added in order to measure various ocean characteristics - buoys and wave gliders. Buoys are moored, allowing them to remain stationary and for scientists to get measurements from the same place over time. The time series created from these measurements are key to understanding how ocean chemistry is changing over time. There are also buoys moored in the open-ocean and near coral reef ecosystems to monitor the changes in the carbonate chemistry in these ecosystems. The MAP CO2 sensors on these buoys measure pCO2 every three hours.

Access our buoy data

 


Ship surveys

Research cruises are a way to collect information about a certain ecosystem or area of interest.

For decades, scientists have learned about physical, chemical and biological properties of the ocean and coasts by observations made at sea. Measurements taken during research cruises can be used to validate data taken by autonomous instruments. One instrument often used on research cruises is a conductivity, temperature, and depth sensor (CTD), which measures the physical state of the water (temperature, salinity, and depth). The sensor often goes in the water on a rosette, which also carries niskin bottles used to collect water samples from various depths in the water column. Numerous chemical and biological properties can be measured from water collected in niskin bottles.


Ships of Opportunity

Ships of Opportunity (SOPs) or Volunteer Observing Ships (VOSs) are vessels at sea for other reasons than ocean acidification studies, such as commercial cargo ships or ferries.

The owners of these vessels allow scientific instrumentation that measures ocean acidification (OA) parameters to be installed and collect data while the ship is underway. This allows data on ocean chemistry to be collected in many remote areas of the world's ocean, such as high latitude waters, long distances from land (e.g. mid-basin waters), and places not easily accessible by research cruises. These partnerships have greatly increased the spatial coverage of OA monitoring world-wide. To learn more, check out the Ships of Opportunity programs established by the NOAA Pacific Marine Environmental Laboratory (PMEL) and the NOAA Atlantic Oceanographic Marine Laboratory (AOML).


Wave Gliders

Scientists at the NOAA Pacific Marine Environmental Laboratory (PMEL) are working with engineers at Liquid Robotics, Inc. to optimize a Carbon Wave Glider.

This instrument (pictured above) can be driven via satellite from land. Carbon Wave Gliders can be outfitted with pCO2, pH, oxygen, temperature and salinity sensors, and the glider’s equipment takes measurements as it moves through the water. The glider’s motion is driven by wave energy, and its sensors are powered through solar cells and batteries, when needed.


CORAL REEF MONITORING

NOAA’s Coral Reef Conservation Program (CRCP) in partnership with OAP is engaged in a coordinated and targeted series of field observations, moorings and ecological monitoring efforts in coral reef ecosystems.

These efforts are designed to document the dynamics of ocean acidification (OA) in coral reef systems and track the status and trends in ecosystem response. This effort serves as a subset of a broader CRCP initiative referred to as the National Coral Reef Monitoring Plan, which was established to support conservation of the Nation’s coral reef ecosystems. The OAP contributes to this plan through overseeing and coordinating carbonate chemistry monitoring. This monitoring includes a broadly distributed spatial water sampling campaign complemented by a more limited set of moored instruments deployed at a small subset of representative sites in both the Atlantic/Caribbean and Pacific regions. Coral reef carbonate chemistry monitoring is implemented by researchers at the NOAA Atlantic Oceanographic & Meteorological Laboratory (AOML) and NOAA's PIFSC Coral Reef Ecosystems Division.

 

LEARN MORE ABOUT HOW WE MEASURE CORAL REEF CHANGE


OAP SUPPORTED MONITORING PROJECTS

Sustained OA Mooring Observations

Adrienne Sutton, NOAA Pacific Marine Environmental Laboratory

Since ocean acidification (OA) emerged as an important scientific issue, the PMEL Carbon Group has been augmenting and expanding our observational capacity by adding pH and other biogeochemical measurements to a variety of observing platforms.  In particular, high-frequency observations on moorings provide valuable information for better understanding natural variability in inorganic carbon chemistry over daily, seasonal, and interannual cycles. The current NOAA OA mooring network consists of 21 moorings in coral, coastal, and open ocean environments (Figure 1).  At present, the OA mooring network includes surface measurements of CO2 (seawater and atmospheric marine boundary layer), pH, temperature (T), salinity (S), dissolved oxygen (DO), fluorescence, and turbidity at all sites.  The main objective of this network is to quantify temporal variability in the ocean carbon system.  This includes describing how annual, seasonal, and event-scale variability impacts air-sea CO2 flux and ocean acidification; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.  Sustained investments in the OA mooring network maintain long-term time series of OA variability and change, allow the PMEL Carbon Group and partners to provide analyses and comparisons of patterns and trends across the network, and make these mooring data available to the public and the broader scientific community.

The main hypothesis that motivates this mooring network is that the range of natural variability as well as the rates and magnitude of acidification will vary across time, space, and depth as a consequence of local and regional geochemical, hydrological, and biological mechanisms. Similar to the iconic Mauna Loa atmospheric CO2 time series, the “ocean observatories” in the NOAA OA/CO2 mooring network gain importance with time as they, in this case, begin to distinguish ocean carbon uptake and ocean acidification from the large natural temporal variability in the marine environment. The main objective of the NOAA OA/CO2 mooring network is to quantify temporal variability in the ocean carbon system.  This includes describing how annual, seasonal, and event-scale variability impacts CO2 flux and OA; providing the carbon chemistry baseline that informs biological observations and research; and contributing to the validation of ocean biogeochemical models and coastal forecasts.

Wednesday, November 16, 2016
Categories: Projects

OA Monitoring in the US Pacific Coastal Waters

Burke Hales, Oregon State University

The goal of this component of the project is to continue the mooring and ship-based monitoring of the Ocean Acidification-impacted carbonate chemistry of US Pacific coastal waters. This objective will be accomplished by: 1) continued operation of the Oregon Ocean Acidification Mooring Program, including deployment and maintenance of the surface moorings at the established Ocean Acidification (OA) node at NH10 with surface MAPCO2 systems, nearbottom moorings with SAMI-CO2 and SAMI-pH systems at the NH10 site and the shelfbreak in the early stages of the project, followed by a relocation (following validation exercises, see #3) of these assets to a more biologically productive site to the south; 2) measurement support of the West Coast Ocean Acidification Cruise in 2016; and 3) a validation program for moored measurements off the Oregon Coast. The final component will include a parallel deployment of the NOAA-OAP moored assets at NH-10 for 6-12 months following establishment of the OOI node there to ensure consistency between the OAP and OOI platforms, as well as continued opportunistic sample collection for archiving and analyses in Hales; lab at OSU.

Tuesday, November 8, 2016
Categories: Projects

Sustaining OA Measurements on the Washington Coast NANOOS NEMO Moorings

Jan Newton, NANOOS

Working with the Carbon Group at NOAA’s Pacific Marine Environmental Lab, we propose to continue the now 4-year time series of real-time, high-frequency measurements of critical core OA parameters on the northern Washington shelf, including regular collection of validation samples. Specifically APL-UW will continue to maintain a heavily-instrumented surface mooring (Cha’ba) providing core OA and support parameters 13 miles WNW of La Push, WA, within the Olympic Coast National Marine Sanctuary, just shoreward and south of the Juan de Fuca Eddy---a known harmful algae bloom (HAB) source (Trainer et al., 2009; Hickey et al., 2013). Cha’ba currently houses a MAPCO2 system and many auxiliary sensors including two pH sensors, several CTDs, two oxygen sensors, an ADCP, and a fluorometer/turbidity sensor. Because of budget limitations, lack of ship time, and possessing only one surface mooring, we are only able to deploy the Cha’ba system for 6-8 mo/yr, typically from March-April through September-October. A LOI is attached to this workplan that would allow for continuous 12 mo/yr deployments in order to bring this to the full requirements of NOAA OAP. Cha’ba’s location, in an upwelling zone and near the source waters to Puget Sound via the Strait of Juan de Fuca, offers key insights. While Cha'ba records surface air and seawater conditions with some depth resolution, NANOOS also supports a subsurface profiling mooring 400m away from Cha''ba, measuring full water-column properties below 20m, soon to be instrumented (US IOOS funding) with a real-time HAB detection system, pH sensor and profiling CTD offering broader context and insights on biological responses. Synergies between OA and HAB toxicity have been suggested (Sun et al., 2011). Continuation of the MAPCO2 effort on Cha''ba with these ancillary data will facilitate analysis to further develop our understanding of shelf processes important to OA variability, prediction, and biological responses.

Tuesday, November 8, 2016
Categories: Projects

Moored Observations of Ocean Carbon System Variables in the Southern California Current Ecosystem

UWE Send, Scripps Institution of Oceanography

This project will deploy two interdisciplinary moorings (CCE1 and CCE2) in the southern California Current System, a key coastal upwelling ecosystem along the west coast of North America. The study region forms the dominant spawning habitat for most of the biomass of small pelagic fishes in the entire California Current System, is important for wild harvest of diverse marine invertebrates and fishes, plays a significant role in the ocean carbon budget for the west coast, and is in close proximity to the Channel Islands National Marine Sanctuary. The offshore CCE1 mooring is located in the core flow of the California Current itself, and represents a key source of horizontal transport of nutrients, dissolved gases, and organisms from higher latitudes. It also represents the offshore atmosphere-ocean gas exchange that occurs over a large area and influences the carbon budget of this Eastern Boundary Current. The CCE2 mooring is located near Pt. Conception, one of the major upwelling centers off the west coast. This is a site of strong, episodic upwelling events that lead to marked increases in pCO2, declines in pH and dissolved oxygen, and intrusion of waters unfavorable to precipitation of calcium carbonate by some shell-bearing marine organisms. The proposed work will regularly deploy and service taut line, bottom-anchored moorings at the two mooring sites, with sensors designed to measure all core carbonate system variables specified by the PMEL OA Monitoring Network. The data will be validated with shipboard measurements and rigorous QC procedures, and made freely available via Iridium satellite telemetry. Complementary measurements made by partners in this region include Spray glider-based assessments of calcium carbonate saturation state, CalCOFI shipboard hydrographic and plankton food web measurements, process studies conducted by the CCE-LTER (Long Term Ecological Research) site, and a new experimental Ocean Acidification facility.

PI: Uwe Send

Tuesday, November 8, 2016
Categories: Projects
RSS
123456789