Ocean Acidification Sampling and Observations in South-central Alaska

Ocean Acidification Sampling and Observations in South-central Alaska

Jeff Hetrick - Chugach Regional Resources Commission

Community Sampling and Ocean Acidification Observations in South-central Alaska

Why we care
Southeast Alaska experiences ocean acidification at a faster rate than other regions due to its cold water temperatures and ocean current patterns. Indigenous communities rely on a healthy marine ecosystem and the culturally and economically important species that are impacted. This long-term community science monitoring program brings together scientists, aquaculturists, and seven Alaska Native communities to build capacity. This project brings awareness about the program, ocean acidification, and its impacts through multimedia. 

What we are doing
The CRRC created a video in partnership with Alutiiq Pride Shellfish Hatchery (APSH) to communicate the scientific findings of a long term Native Alaskan community science water quality program  south-central Alaska. The goals of the video are educating and raising awareness  of ocean acidification and the community science monitoring program to Alaskan Natives and communities the CRRC serves. The video delivers the main findings of the program, highlights the partners and points to current and future impacts to wild shellfish and traditional subsistence food in the Chugach region. 

Benefits of our work
This monitoring program serves as an example of co-producing science with indigenous communities that can be used nationwide. The video provides long-term water quality and ocean acidification monitoring data in a more meaningful storytelling format for coastal Alaska Native communities impacted by changing ocean conditions. By using different science communication techniques, such as through multimedia projects, the CRRC and APSH can reach more communities that may be interested in starting a water quality monitoring program in their local marine ecosystem.


Sunday, March 5, 2023

Technology Refresh: Accelerating OA Sensor Development

Chris Meinig - NOAA Pacific Marine Environmental Laboratory

Accelerating Ocean Acidification Sensor Development

Why we care
After nearly a decade, the NOAA Ocean Acidification Observing Network (NOA-ON) has reached the maturity level where a sustained effort to refresh its core technology, the Moored Autonomous pCO2 (MAPCO2), is necessary to maintain the current monitoring level. There is also the pressing need to develop technology to both improve the accuracy and reliability of the measurement of a second carbonate system parameter (dissolved inorganic carbon, DIC) in order to better measure and understand ocean acidification (OA). 

What we are doing
We will develop a modestly-priced, mass-producible, climate-quality surface ocean system that will measure 2 key parameters (pCO2, DIC) of the oceans carbonate (buffering) system. The system will be deployable on a variety of autonomous platforms and vehicles to meet the needs of both the ocean acidification and surface ocean carbon dioxide international observing networks. 

Benefits of our work
The NOA-ON network can sustain these important observations while adding the ability to autonomously observe the ocean with a measurement quality sufficient to detect long-term changes in ocean acidification. This is a priority task for NOA-ON, the Global Ocean Acidification Observing Network (GOA-ON) and others that cannot be accomplished with current technology. The pCO2-DIC sensor developed under this project will contribute towards better assessment of the vulnerability of U.S. waters to ocean acidification by providing access to real time information about the variability of OA, meeting the needs of several stakeholders in the marine resource community.


Sunday, February 12, 2023
Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

David Whitall - NOAA National Centers for Coastal Ocean Science

Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety

Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety. 

What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.

Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.


Wednesday, August 31, 2022
Impacts of Ocean Acidification on Alaskan and Arctic fishes

Impacts of Ocean Acidification on Alaskan and Arctic fishes

Tom Hurst - Alaska Fisheries Science Center

Effects of OA on Alaskan and Arctic fishes: physiological sensitivity in a changing ecosystem

Why we care
There is significant concern about ocean acidification disrupting marine ecosystems, reducing productivity of important fishery resources, and impacting the communities that rely upon those resources. To predict the ecological and socioeconomic impacts of acidification, it is critical to understand the complex interactions between environmental stressors of physiology and ecology of marine fishes. Previous work on Alaskan groundfish focused on direct physiological effects of OA on early life stages. We need to further this work to understand the interaction between OA and co-stressors like elevated temperatures on fish productivity. 

What we are doing 
This AFSC project examines the interactive effects of OA and elevated temperatures on three fish species that are critical to Alaska and Arctic fisheries: Pacific cod, Arctic cod, and yellowfin sole. Laboratory experiments will track the impact of OA exposure on adult Arctic cod reproductive output, egg quality, and larval production. Further experiments will consider the potential for within-generation and trans-generational acclimation and adaptation to environmental changes. Risk assessments for regional fisheries will incorporate the data from this project.

Benefits of our work
Findings from this research will provide the foundation necessary to evaluate the ecological and socioeconomic impacts of ocean acidification in Alaskan and Arctic waters.


Wednesday, August 31, 2022
Surveying the state of ocean acidification along the U.S. West Coast

Surveying the state of ocean acidification along the U.S. West Coast

Richard Feely - Pacific Marine Environmental Laboratory

PMEL Sustained Ocean Acidification Biogeochemical and Ecological Survey Observations

Why we care
U.S. West coast-wide hydrographic surveys have been conducted intermittently from 2007 to 2017, providing evidence for the geographic extent and severity of ocean acidification in the continental shelf ecosystem. Scientists on the NOAA West Coast Ocean Acidification (WCOA) discovered that the combined effects of anthropogenic and biologically-derived carbon dioxide resulted in significant biological impacts for oyster larvae and pteropods, which are small, ecologically important mollusks for the food web. 

What we are doing
This project executes a large-scale survey of ocean acidification carbonate chemistry in the California Current System and continues processing data and publishing scientific papers based on 2016 and 2017 surveys findings. This survey determines the spatial distributions of temperature, salinity, pH, dissolved inorganic carbon, total alkalinity, oxygen, nutrients, and biological parameters along the west coast of North America. Survey results will provide the basis for accurate assessments of changing ocean chemistry in the following areas: 1) spatial variability; 2) extent and causes of long-term changes in carbonate system parameters and their impacts on calcifying (shell-building) organisms; and 3) empirical relationships for obtaining high-resolution information on ocean acidification collected on moorings. 

Benefits of our work
This project links the combined stressors of increased temperature, acidification, and hypoxia (low oxygen) with effects on marine organisms in the region and identifies spatial variability of acidifying conditions during the spring/summer upwelling season. In addition to scientific partners, this project engages a NOAA Teacher At Sea (TAS) fellow on the cruise to help develop outreach and education on West Coast ocean acidification.


Wednesday, August 31, 2022
RSS
12345678910Last