Genetic and phenotypic response of larval American lobster to ocean warming and acidification across New England’s steep thermal gradient

Dr. Richard Wahle & Dr. David Fields, University of Maine & Bigelow Laboratory for Ocean Sciences

Co-PI's Wahle (UMaine) and Fields (Bigelow Laboratory) join Co-investigator Greenwood (UPEI) in this US-Canadian collaboration. The proposed study is designed to fill knowledge gaps in our understanding of the response of lobster larvae to ocean warming and acidification across lobster subpopulations occupying New England’s steep north-south thermal gradient. The research involves a comprehensive assessment of the physiological and behavioral response of lobster larvae to climate model-projected end-century ocean temperature and acidification conditions. We will address the following two primary objectives over the 2-year duration of the proposed study:

(1)  To determine whether projected end-century warming and acidification impact lobster larval survival, development, respiration rate, behavior and gene expression; and

(2)  To determine whether larvae from southern subpopulations are more resistant than larvae from northern populations to elevated temperature and pCO2.

Wednesday, January 25, 2017
Categories: Projects

Developing innovative tools to connect stakeholders with NOAA's Ocean Acidification Observing Network (NOA-ON)

Adrienne Sutton and Simone Alin, NOAA Pacific Marine Environmental Laboratory

Students from University of Washington's (UW) College of Computer Science & Engineering (CSE), are looking for local opportunities to apply their newly-acquired skills and gain experience in preparation for a competitive job market. We propose to leverage this local (and economical) tech resource by hiring student interns interested in working with the PMEL Carbon Program's large data collections and developing novel interactive tools for data visualization and communication that would serve the broader community of scientists, resource managers, and other stakeholders. We also propose to develop new 2D and/or 3D visualizations of observational data, model results, model-data comparisons, and conceptual diagrams related to OAP-funded work in the California Current Large Marine Ecosystem to improve the coastal OA community's ability to communicate with stakeholders about observed and forecasted conditions and potential impacts. This work will build on an existing partnership with UW's Center for Environmental Visualization (CEV), which built the PMEL Carbon Program website in 2010 and recently updated our antiquated Google Earth data portal (www.pmel.noaa.gov/co2/map/index). The proposed work will contribute to improving the public's access to and ability to interact with data generated by the NOAA Ocean Acidification Observing Network (NOA-ON) with the goal of increasing awareness and understanding of ocean acidification (OA). 

Wednesday, November 16, 2016
Categories: Projects

Synthesis and understanding of ocean acidification biological effects data by use of attribute-specific, individual-based models

Chris Chambers, NOAA Northeast Fisheries Science Center

Why we care

Winter flounder are a commercially harvested finfish that occur within the Mid-Atlantic Bight and support fisheries in several U.S. states. Understanding the potential or realized effects on ocean acidification (OA) on this fish and the implications on fished populations is essential for building resilience for this fish and the people who depend on them. This project makes the link between experimental results on the effects on winter flounder and populations using a modeling approach.

What we're doing

We are using data from experimental studies of the effects of ocean acidification on winter flounder to construct realistic population-process models of marine finfish. 

The models are of an individual‐ based model (IBM) category that use detailed biological responses of individuals to OA.  This tool synthesizes OA data in two different ways.  First, it accumulates and connects data through mechanistic relationships between the environment and fish life‐history.  Second, it allows exploration of the population‐level consequences of CO2 effects (the source of OA) which explicitly include population effects carried over from the highly sensitive early life‐stages (ELS). This information is fundamental to understanding the community and ecosystem effects of OA on living marine resources.  

The project directs efforts at two different, complimentary levels.  At the more detailed, specific level, winter flounder – an economically important, well‐studied fish of Mid‐Atlantic to New England waters – will be used as a model subject. Past work provides estimates of CO2 effects on key life‐history and ecological parameters (e.g., fertilization, larval growth, development, and survival) that will enhance and update the model to include these parameters. We will evaluate the winter flounder OA‐IBM under multiple scenarios:  high average levels of CO2 representing future oceans in shelf habitats; high and variable CO2 depicting future inshore, estuarine habitats; and covariances of CO2 with other environmental stressors (e.g., warmer waters, hypoxia).  

Benefits of our work

The models help resource managers and others assess and predict the potential impacts of ocean acidification on winter flounder. The project will produce a web‐based tool that allows users to add details from other marine finfish of the northeaster USA and OA‐affected processes as relevant OA data on those species become available. 

 

Wednesday, November 16, 2016
Categories: Projects

Time series assessments of OA and Carbon system properties in the western Gulf of Maine

Joe Salisbury, University of New Hampshire

In terms of the commercial value of its shellfish and its importance as a finfish breeding ground, the western Gulf of Maine (GOM) is certainly one of the most valuable ecosystems in the United States. Because over 80% of organisms landed in the GOM must utilize calcium carbonate during certain critical life stages, the effects of ocean acidification (OA) on ecosystems are a topic of increasing regional concern. This notion was accentuated by recent demands from marine industry stakeholders and the State Legislature in Maine who convened an Ocean Acidification Commission to study and mitigate the effects of OA. By nature of its cool temperatures and copious freshwater subsidies from both remote and local origins, the western GOM may be particularly sensitive to future acidification stresses (Salisbury et al, 2008; Wang et al, 2013). With the goals of 1) providing data critical for climate studies and local decision support, and 2) understanding of regional processes affecting acidification, we propose to maintain data collection efforts at and proximal to UNH-PMEL acidification buoy. We will deploy, maintain and recover the buoy and its suite of instruments that provide quality oceanographic and carbonate system data. We will supplement these activities with seasonal cruises that map surface regional pCO2 and several surface variables supplemented with hydrographic and optical profiles at six stations along the UNH Wilkinson Basin Line (aka Portsmouth Line), which runs orthogonal to the coast. This in turn will be supplemented with ancillary bottle sampling and all will be used in research aimed at understanding processes controlling the dynamically evolving carbonate system in the western GOM.

Wednesday, November 16, 2016
Categories: Projects

Monitoring of water column DIC, TA and pH on the N.E. U.S. shelf and the development of OA Indicators to inform Marine resource managers

Jon Hare, NOAA Northeast Fisheries Science Center

The Ecosystem Monitoring program of the Northeast Fisheries Science Center conducts four dedicated cruises per year covering the entire extent of the Northeast United States (NEUS).  NOAA OAP provides funding for the processing of dissolved inorganic carbon (DIC) and total alkalinity (TAlk ) samples from two Ecosystem Monitoring cruises. As part of these cruises, water samples have been taken at a subset of locations and at a range of depths. The depth-discrete nature of this sampling is very important and provides data to complement the more intensive surface sampling conducted by the pCO2 sensors. These samples are used to measure DIC and TAlk and their analyses are conducted by AOML.  In addition, samples for among lab comparisons have been collected. Nutrient samples are also taken and are analyzed at University of Maine. 

Initially, these samples will be used for an analysis comparing the extent of ocean acidification on the NEUS compared to the late 1970's. Subsequently, these samples will be used to provide continued monitoring of the state of ocean acidification. In addition, these samples will be used to better understand the relationship between carbonate chemistry and nutrient speciation on the NEUS. While interpretation of this data is complex, a consolidated analysis is being undertaken to develop an “Ocean Acidification Indicator” for the Northeast Shelf. This metric will provide resource managers and vested stakeholders a concise interpretation of current and near-term expected conditions of acidification in the region. This project also coordinates and cooperates with a number of other regional partners in an attempt to fulfill the regional monitoring vision of National OA Plan.

Wednesday, November 16, 2016
Categories: Projects
RSS
First567891011121314Last