Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Sustained ocean acidification monitoring on ships of opportunity in the Pacific

Simone Alin - Pacific Marine Environmental Laboratory

PMEL Sustained Investment Coastal Underway Ocean Acidification Observations (PUO)

Why we care
Underway ship measurements of ocean acidification (OA) data on ships of opportunity (SOOP) have proven to be a robust and cost-effective way of expanding OA observations. Ship-based observations provide an understanding of the spatial extent of processes that drive OA. Surface underway observations, in conjunction with coastal moorings and dedicated large-scale surveys, make an important contribution to addressing the hypothesis that acidification varies across space and time as a consequence of local and regional processes.


What we are doing 
The focus of this project is to sustain existing underway OA monitoring systems on NOAA Ships Oscar Dyson and Bell M. Shimada, which operate along the U.S. West Coast. Project objectives also include sustaining underway OA observations in the equatorial Pacific, upgrading sensor systems, and improving oxygen data collection. 

Benefits of our work
This project increases high-quality surface water OA data taken underway to accompany NOAA Fisheries cruises. Efforts also improve spatial and temporal coverage of OA measurements, improving our understanding of OA variability along the Pacific coast of North America.


Wednesday, August 31, 2022

The Olympic Coast as a Sentinel: An Integrated Social-Ecological Regional Vulnerability Assessment to Ocean Acidification

Jan Newton, University of Washington

The Olympic Coast, located in the Pacific Northwest U.S., stands as a region already experiencing effects of ocean acidification (OA). This poses risks to marine resources important to the public, especially local Native American tribes who are rooted in this place and depend on marine treaty-protected resources. This project brings together original social science research, synthesis of existing chemical and biological data from open ocean to intertidal areas, and model projections, to assess current and projected Olympic Coast vulnerabilities associated with OA. This critical research aims to increase the tribes’ ability to prepare for and respond to OA through respective community-driven strategies. By constructing a comprehensive, place-based approach to assess OA vulnerability, decision-makers in the Pacific Northwest will be better able to anticipate, evaluate and manage societal risks and impacts of OA. This collaborative project is developed in partnership with tribal co-investigators and regional resource managers from start to finish and is rooted in a focus on local priorities for social, cultural, and ecological health and adaptive capacity.

Friday, December 22, 2017
Mukilteo scientist tries to discover why C02 is hurting oceans

Mukilteo scientist tries to discover why C02 is hurting oceans

HeraldNet

Shallin Busch is a Mukilteo-based ecologist whose research is linking ocean acidification to the deteriorating health of the Puget Sound ecosystem. The Mukilteo team has looked at or is looking at ocean acidification effects on krill, salmon, Dungeness crab, black cod and pteropod (marine snails). So far it has found that lower pH levels lead to lower survival and slower development rates, as well as changes in behavior. 
Wednesday, October 11, 2017
A Sentinel for Change: Secrets along the seafloor in Olympic Coast

A Sentinel for Change: Secrets along the seafloor in Olympic Coast

NOAA Ocean Acidification Program

Whether you arrive on the Olympic Peninsula by land, sea, or air, you sense its remote, rugged and vast environment immediately. The Olympic Coast is home to productive waters which sustain thriving marine and coastal communities that have long supported the region’s tribal peoples. Ocean waters quickly deepen just offshore, boasting canyons which extend almost a mile below the surface – and have yet to be fully explored. 

Thursday, August 24, 2017
NOAA research links human-caused CO2 emissions to dissolving sea snail shells off U.S. West Coast

NOAA research links human-caused CO2 emissions to dissolving sea snail shells off U.S. West Coast

NOAA

For the first time, NOAA and partner scientists have connected the concentration of human-caused carbon dioxide in waters off the U.S. Pacific coast to the dissolving of shells of microscopic marine sea snails called pteropods.

“This is the first time we’ve been able to tease out the percentage of human-caused carbon dioxide from natural carbon dioxide along a large portion of the West Coast and link it directly to pteropod shell dissolution,” said Richard Feely, a NOAA senior scientist who led the research appearing in Estuarine, Coastal and Shelf Science. “Our research shows that humans are increasing the acidification of U.S. West Coast coastal waters, making it more difficult for marine species to build strong shells.”

Wednesday, November 23, 2016
RSS