Resources: News title bar

Text/HTML


EasyDNNNewsSearch

Text/HTML


EasyDNNNews: OA News

Testing critical population level hypothesis regarding OA effects on early life history stages of marine fish for the N.E. U.S.

Chris Chambers, NOAA Northeast Fisheries Science Center

The primary goal of our OA projects (NEFSC Howard Laboratory) is to understand the impacts of increased CO2 and acidity of ocean and estuarine waters on important finfish species of our region. Our tactical objectives during FY12-14 were to develop, test, and then implement an experimental system that allows for the estimation of impacts of high CO2 and associated increased acidity of marine waters on the ELS of economically and ecologically important finfish species important to the NE USA. In FY15-17 we are building upon investments in research capacity and knowledge, and our experiments are addressing higher order questions that fold very well into one of the goals of the Interagency Working Group on OA – undertaking research to examine species-specific and multi-species physiological responses including behavioral and evolutionary adaptive capacities. We have four higher level objectives for our FY15-17 studies. 

First, we are testing our hypothesis that the resilience of the individuals in a population is inversely related to the variability of the CO2 in the habitat the population occupies (see also, Murray et al. 2014). This evaluation is being done by conducting comparative experiments among winter flounder from separate and distinct source populations whose resident habitats differ in characteristic levels and stability in CO2. Second, we are evaluating the role of parental exposure in the resilience / susceptibility of offspring to elevated CO2 (Sunday et al. 2014, Malvezzi et al. 2015). For these transgenerational studies, we are using three different forage species (original intent was to use Atlantic cod broodstock housed at the University of Maine but logistics and staffing decisions there precluded our use of those fish). Third, we are expanding our synthesis and meta-analysis of biological effects of CO2 on finfish. Lastly, we continue our education and outreach efforts on OA themes by mentoring students, conducting surveys, and providing tours of our OA experimental facilities.

Wednesday, November 16, 2016
Categories: Projects

East Coast OA (ECOA) Cruise

Joe Salisbury (University of New Hampshire) & Wei-Jun Cai (University of Delaware)

NOAA academic partners Salisbury and Cai will organize and lead a 34-days cruise covering 12 transects of the U.S. and Canadian coast oceans from Nova Scotia in the north to the Gulf of Maine, Long Island Sound, Mid-Atlantic and Southern Bight regions, ending with a transect off of mid Florida. This cruise will serve as a synoptic characterization of the marine carbonate parameters of the coastal ocean with increased coverage in nearshore areas that have not surveyed in the previous cruises and subsurface dynamics that are not captured from using buoyed assets or ships of opportunity. The climate quality data from these cruises provide an important link to the Global Ocean Acidification Network (GOAN) effort, and serves as a start of a long-term record of dynamics and processes controlling Ocean Acidification (OA) on the coastal shelves. To this end there is an increasing focus on these cruises to perform rate measurements (e.g. NPP/NEP/NEC) for validation measurements of autonomous assets and buoyed assets, for algorithm development utilizing remotely sensed signals that are used to characterize saturation states, and to project the future state of ocean acidification in the project area. 

Wednesday, November 16, 2016
Categories: Projects

Service and Maintenence of the Gray's Reef OA Mooring

Wei-Jun Cai & Scott Noakes

This project will provide service and maintenance of sensors and ground-truthing of the mooring data at the Gray's Reef OA monitoring site, as well as data quality control and synthesis. Specifically, we will accomplish the follow three tasks: 1. Deployment and maintenance of the sensors (pCO2, pH, and dissolved oxygen); 2. Collection of underway pCO2 data and bulk water samples for analyses using ship-of-opportunity and dedicated cruises about four times a year; and 3. Data quality control and data synthesis.

Wednesday, November 16, 2016
Categories: Projects

Building Robust Reef Carbonate Projections from Synthesized NCRMP Ocean Acidification Datasets

Tom Oliver and Derek Manzello, NOAA Coral Reef Conservation Program

This project will serve to (1) synthesize National Coral Reef Monitoring Program (NCRMP) OA Enterprise observations; (2) compare reef OA observations to oceanic end members to infer reefscale biogeochemical processes, and finally (3) use these synthesis products to better link projection models of oceanic carbonate systems to reef-scale OA impacts. The NCRMP OA enterprise supports: our collection of seawater samples from reef and surface observations; a set of MapCO2 buoys in the Caribbean and Hawaii; diurnal monitoring instruments (e.g. CREP's diurnal suite, AOML's/McGillis' BEAMS); and metrics of ecosystem response to OA (e.g. CAUs, coral coring, etc.). The datasets generated by these activities will be the focus of this wide-ranging synthesis.

Wednesday, November 16, 2016
Categories: Projects

Effects of elevated pCO2 and temperature on reef biodiversity and ecosystem functioning using Autonomous Reef Monitoring Structures and hyperspectral technology

Molly Timmers, NOAA Coral Reef Conservation Program

The goal of this project is to improve our understanding of the effects of ocean acidification and warming on coral reef communities by examining responses of entire suites of reef organisms recruiting to Autonomous Reef Monitoring Structures (ARMS) in benthic mesocosms. We will perform a fully factorial experiment that consists of four treatments of low and high temperature and pCO₂ levels. ARMS are the leading long-term monitoring tool to measure biodiversity on reef systems and are integrated into the National Coral Reef Monitoring Program (NCRMP) Class II and Class III climate stations dedicated to monitor and access the physical, chemical and biological impacts associated with climate change over time. We propose to examine the effects of elevated temperature and pCO₂ on recruitment, biomass, biodiversity, and community structure over a multiannual time frame to increase our understanding of how biodiversity, ecosystem function, and their relationship will be impacted under future climate scenarios. 

Wednesday, November 16, 2016
Categories: Projects
RSS
First6789101112131415Last