Understanding the effects of ocean acidification on Dungeness crab

Understanding the effects of ocean acidification on Dungeness crab

Paul McElhany - NOAA Northwest Fisheries Science Center

Understanding CO2 effects on Dungeness crab: population variability, temperature interactions, calcification process, and carbonate sensitivity

Why we care
Dungeness crabs support the most valuable fishery on the U.S. West Coast. Previous research shows lower survival and slower development in Dungeness crab zoea (young larval stage) when reared in high carbon dioxide conditions. This project helps us understand why, where, and under what conditions these effects occur. Answers to these questions will allow better projections of how Dungeness crab will fare in an acidifying ocean and provide critical data for projections of impacts on related species. 

What we are doing 
This project investigates regional variation in Dungeness crab to acidification, expanding the geographic range of previous studies to British Columbia. We will evaluate the relative impacts of acidification and climate-driven temperature change in multi-stressor experiments. This project aims to determine which of the carbonate chemistry parameters (pH, saturation state, partial pressure of carbon dioxide, dissolved inorganic carbon, and alkalinity) drive changes in Dungeness crab survival. This indicates which physiological processes are involved in responding to ocean acidification  and those we expect to drive any field observations of biological changes from ocean acidification. Lastly, we use stable calcium isotopes as labels to help understand the calcification process throughout the Dungeness crab molting cycle. We can then assess this as a potential cause of observed mortality and the utility of using exoskeleton condition as a field indicator of acidification. 

Benefits of our work
The research will explicitly evaluate potential mechanisms involved in observed field correlations between Dungeness crab larval exoskeleton morphology and ocean carbonate chemistry. These observations allow an assessment of Dungeness crab as a biological indicator of ocean acidification in the region.

Sunday, April 16, 2023

2023 American Lobster Research Program Funding Opportunity Now Open

Apply for up to $500K in FY2023

Sea Grant announces a new funding opportunity for collaborative projects that address priority research needs to enhance our understanding of and address impacts to the American lobster fishery in the Gulf of Maine, Georges Bank, and southern New England.

The program seeks applications from research teams and encourages partnerships between industry, State agencies, and/or academia that address American lobster population dynamics, life history parameters (including temperature, ocean acidification or other changing climate conditions), species interactions and behavior, and/or social, behavioral, or economic research, including analyses regarding measures under consideration for inclusion in the Atlantic Large Whale Take Reduction Plan.

Sea Grant anticipates having up to $2 million dollars to fund a diversity of projects with funding requests up to $500k in FY 2023. Projects may be one or two years in duration with a maximum of two years. Non-federal matching funds equal to at least 50 percent of the federal funding request must be provided.

Read the full announcement

Applications must be submitted to Grants.gov by 11:59 p.m. ET, May 10, 2023.

The research will become part of the Wednesday, March 22, 2023

Sixth Report on Federally Funded Ocean Acidification Monitoring and Research

Advancing Ocean Acidification Research and Monitoring

The Interagency Working Group on Ocean Acidification of the National Science and Technology Council’s Subcommittee on Ocean Science and Technology released their Sixth Report on Federally Funded Ocean Acidification Research and Monitoring Activities. The report highlights a range of research activities from measuring where and when ocean acidification occurs, understanding the impact of ocean and coastal acidification on ecosystems and communities, to identifying potential ocean-based climate solutions. The report included projects that advance observations and modeling of ocean carbon, test new technology developments, study potential socioeconomic impacts of ocean acidification, and conduct public education and outreach. Collectively, this research provides important insights that will enable managers and communities to better anticipate and respond to ocean and coastal acidification.

White House Announcement

Link to Report

Tuesday, November 1, 2022
Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023

Join us for the Ocean Acidification Community Meeting Jan 4-6, 2023

NOAA OAP convenes community meeting in San Diego, CA!

Every three years, the NOAA Ocean Acidification Program convenes researchers, communicators and others in the OA community for a meeting to discuss and share the latest research and future needs and directions. We want your participation! Registration is free.

Meeting Goals

  • Shape the future strategic direction of the OAP

  • Inform community members of recent OAP-supported efforts

  • Foster collaborations within the OA research community

  • Identify critical research gaps and efforts to address them

  • Highlight and discuss diversity, equity, inclusion, accessibility, and justice in OA research and our community

Find more details and register HERE.

Wednesday, September 28, 2022
Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

Interactions between ocean acidification and metal contaminant uptake by Blue Mussels

David Whitall - NOAA National Centers for Coastal Ocean Science

Assessing ocean acidification as a driver for enhanced metals uptake by Blue mussels (Mytilus edulis): implications for aquaculture and seafood safety

Why we care
Ocean acidification causes changes in the chemistry of stressors such as metals and may affect both the susceptibility of these animals to the contaminants as well as the toxicity. This is especially important for animals like blue mussels and other economically important shellfish that accumulate toxins in their bodies. Metal accumulation as a co-stressor of ocean acidification is not well documented for northeastern U.S. shellfish aquaculture species and better understanding these relationships supports seafood safety. 

What we are doing
This work investigates the impacts of metal speciation (forms) on blue mussels under acidified conditions in both field and laboratory experiments. Scientists will first study uptake rates of these metals by blue mussels and then see how changing conditions affects their accumulation and toxicity. Comparing what they learn in the lab to what occurs in the field where these mussels are farmed, helps support decisions for seafood safety and industry best practices.

Benefits of our work
Coastal managers and aquaculturists can use these results that provide the societal benefits of better informed siting of aquaculture and safer seafood.


Wednesday, August 31, 2022
RSS
12345678910Last