Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Air–sea exchange of CO2 at a Northern California coastal site along the California Current upwelling system

Citation: Ikawa, H., Faloona, I., Kochendorfer, J., Paw U, K. T., and Oechel, W. C.: Air–sea exchange of CO2 at a Northern California coastal site along the California Current upwelling system, Biogeosciences, 10, 4419–4432, https://doi.org/10.5194/bg-10-4419-2013, 2013.

It is not well understood whether coastal upwelling is a net CO2 source to the atmosphere or a net CO2 sink to the ocean due to high temporal variability of air–sea CO2 exchange (CO2 flux) in coastal upwelling zones. Upwelling transports heterotrophic, CO2 enriched water to the surface and releases CO2 to the atmosphere, whereas the presence of nutrient-rich water at the surface supports high primary production and atmospheric CO2 uptake. To quantify the effects of upwelling on CO2 flux, we measured CO2 flux at a coastal upwelling site off of Bodega Bay, California, with the eddy covariance technique during the summer of 2007 and the fall of 2008, and the bulk method with partial pressure of CO2 of surface water (pCO2) data from November 2010 to July 2011. Variations in sea surface temperatures (SST) and alongshore wind velocity suggest that the measurement period in 2007 coincided with a typical early summer upwelling period and the measurement period in 2008 was during a typical fall relaxation period. A strong source of CO2 (~ 1.5 ± 7 SD (standard deviation) g C m−2 day−1) from the ocean to the atmosphere during the upwelling period was concurrent with high salinity, low SST, and low chlorophyll density. In contrast, a weak source of CO2 flux (~ 0.2 ± 3 SD g C m−2 day−1) was observed with low salinity, high SST and high chlorophyll density during the relaxation period. Similarly, the sink and source balance of CO2 flux was highly related to salinity and SST during the pCO2 measurement periods; high salinity and low SST corresponded to high pCO2, and vice versa. We estimated that the coastal area off Bodega Bay was likely an overall source of CO2 to the atmosphere based on the following conclusions: (1) the overall CO2 flux estimated from both eddy covariance and pCO2 measurements showed a source of CO2; (2) although the relaxation period during the 2008 measurements were favorable to CO2 uptake, CO2 flux during this period was still a slight source; (3) salinity and SST were found to be good predictors of the CO2 flux for both eddy covariance and pCO2 measurements, and 99% of the historical SST and salinity data available between 1988 and 2011 fell within the range of our observations in May–June 2007, August–September 2008 and November 2010–July~2011, which indicates that our data set was representative of the annual variations in the sea state. Based on the developed relationship between pCO2, SST and salinity, the study area between 1988 and 2011 was estimated to be an annual source of CO2 of ~ 35 mol C m−2 yr−1. The peak monthly CO2 flux of ~ 7 mol C m−2 month−1 accounted for almost 30% of the dissolved inorganic carbon in the surface mixed layer.

Effects of ocean acidification and temperature on Alaskan crabs

Red King Crab
Image credit: David Csepp, NMFS AKFSC ABL

Long-term declines of red king crab in Bristol Bay, Alaska may be partially attributed to ocean acidification conditions. These impacts may be partially responsible for the fishery closures during the 2021–2022 and 2022–2023 seasons. Researchers found that ocean acidification negatively impacts Alaskan crabs generally by changing physiological processes, decreasing growth, increasing death rates and reducing shell thickness. Funded by the Ocean Acidification Program, scientists at the Alaska Fisheries Science Center continue to investigate the responses of early life history stages and study the potential of various Alaska crabs to acclimate to changing conditions. Results will inform models that will use the parameters studied to predict the effects of future ocean acidification on the populations of red king crab in Bristol Bay as well as on the fisheries that depend on them. Fishery managers will better be able to anticipate and manage stocks if changing ocean chemistry affects stock productivity and thus the maximum sustainable yield.

More about this work

Forecasts for Alaska Fisheries

Crab pots and fishing nets in Alaska's Dutch Harbor
Image credit: Michael Theberge

Understanding seasonal changes in ocean acidification in Alaskan waters and the potential impacts to the multi-billion-dollar fishery sector is a main priority. Through work funded by NOAA’s Ocean Acidification Program, the Pacific Marine Environmental Laboratory developed a model capable of depicting past ocean chemistry conditions for the Bering Sea and is now testing the ability of this model to forecast future conditions. This model is being used to develop an ocean acidification indicator provided to fisheries managers in the annual NOAA Eastern Bering Sea Ecosystem Status Report.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

Closeup of oysters cupped in someone's hands

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action