Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Contributions of organic alkalinity to total alkalinity in coastal waters: A spectrophotometric approach

Citation: Yang, B., Byrne, R. H., & Lindemuth, M. (2015). Contributions of organic alkalinity to total alkalinity in coastal waters: A spectrophotometric approach. Marine Chemistry, 176, 199-207. https://doi.org/10.1016/j.marchem.2015.09.008

Contributions of organic alkalinity (Org-Alk) to total alkalinity (TA) were investigated in surface waters from three different coastal environments (estuary, urban, mangrove) and offshore sites in the Gulf of Mexico. ∆ TA was calculated as the difference between directly measured TA, and TA calculated from total dissolved inorganic carbon (DIC) and pH. In low nutrient surface waters, ∆ TA should be dominated by Org-Alk with minor contributions from inorganic nutrients (e.g., HPO42 − and SiO(OH)3). Average values of ∆ TA were 0.1 ± 5.0 μmol kg− 1 at coastal sites outside the Mississippi–Atchafalaya River Estuary (n = 17), 33.6 ± 18.0 μmol kg− 1 in the Suwannee River Estuary (n = 17), 16.0 ± 25.4 μmol kg− 1 in the Tampa Bay, Caloosahatchee River, and Ten Thousand Islands area (n = 55), and − 1.0 ± 4.9 μmol kg− 1 in offshore waters (n = 14) in the northern Gulf of Mexico. In addition to Org-Alk assessments based on ∆ TA, procedures were developed for direct spectrophotometric measurements of Org-Alk via titrations of samples that were purged of CO2. Two-step titrations of these DIC-free samples consisted of a first titration from pH 4.5 to 6.0 performed using bromocresol purple (BCP), and a second titration, from pH 6.0 to about 8, using cresol red (CR) as the indicator. By diluting all samples, including the offshore reference sample, to a common salinity (the lowest salinity of the coastal samples), borate alkalinity was presumed to be identical for all samples. Org-Alk values were calculated as differences between titration results obtained for coastal samples and the offshore reference sample and, through ancillary nutrient measurements, accounted for alkalinity contributions from silicate and phosphate. The direct titrations confirmed the existence of substantial Org-Alk in coastal samples. Spectrophotometric titration data were also used for model fitting in order to assess the dissociation constants (pKi) of the organic acids. The pKi of the organic acids were within the previously reported range for riverine fulvic acids.

ADAPTING TO OCEAN ACIDIFICATION

The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:

FORECASTING

Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare

MANAGEMENT

Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes

TECHNOLOGY DEVELOPMENT

Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally

REDUCING OUR CARBON FOOTPRINT

On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

TAKE ACTION WITH YOUR COMMUNITY

You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action