Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Ecosystem Metabolism and Carbon Balance in Chesapeake Bay: A 30-Year Analysis Using a Coupled Hydrodynamic-Biogeochemical Model

Citation: Shen, C., Testa, J. M., Ni, W., Cai, W.-J., Li, M., & Kemp, W. M. (2019). Ecosystem metabolism and carbon balance in Chesapeake Bay: A 30-year analysis using a coupled hydrodynamic-biogeochemical model. Journal of Geophysical Research: Oceans, 124, 6141–6153.

The carbon cycle in estuarine environments is difficult to quantify because of substantial spatiotemporal heterogeneity in the sources, exchanges, and fates of carbon. We overcame these challenges with a multidecade numerical modeling analysis of seasonal, interannual, and decadal variability in net ecosystem metabolism (NEM) and associated carbon fluxes in Chesapeake Bay. Interannual variability in NEM along the estuarine axis indicated a clear spatial dependency of NEM on riverine discharge, with elevated flows causing increasing upper bay heterotrophy and increasing lower bay autotrophy during wet years. Our 30-year simulation suggested the Chesapeake Bay is somewhat unique among estuaries in its tendency toward net autotrophy as a consequence of its extremely high nutrient to organic matter input ratio and large size. Budgets of three different carbon pools revealed that the entire Chesapeake Bay is a CO2 source to the atmosphere and organic carbon source to the open shelf, providing quantitative export estimates for interpretation of anthropogenic perturbations to the regional carbon flux.

Supported by OAP Grant #NA15NOS4780184

Scroll to Top


The NOAA Ocean Acidification Program (OAP) works to prepare society to adapt to the consequences of ocean acidification and conserve marine ecosystems as acidification occurs. Learn more about the human connections and adaptation strategies from these efforts.

Adaptation approaches fostered by the OAP include:


Using models and research to understand the sensitivity of organisms and ecosystems to ocean acidification to make predictions about the future, allowing communities and industries to prepare


Using these models and predictions as tools to facilitate management strategies that will protect marine resources and communities from future changes


Developing innovative tools to help monitor ocean acidification and mitigate changing ocean chemistry locally


On the Road

Drive fuel-efficient vehicles or choose public transportation. Choose your bike or walk! Don't sit idle for more than 30 seconds. Keep your tires properly inflated.

With your Food Choices

Eat local- this helps cut down on production and transport! Reduce your meat and dairy. Compost to avoid food waste ending up in the landfill

With your Food Choices

Make energy-efficient choices for your appliances and lighting. Heat and cool efficiently! Change your air filters and program your thermostat, seal and insulate your home, and support clean energy sources

By Reducing Coastal Acidification

Reduce your use of fertilizers, Improve sewage treatment and run off, and Protect and restore coastal habitats

Previous slide
Next slide


You've taken the first step to learn more about ocean acidification - why not spread this knowledge to your community?

Every community has their unique culture, economy and ecology and what’s at stake from ocean acidification may be different depending on where you live.  As a community member, you can take a larger role in educating the public about ocean acidification. Creating awareness is the first step to taking action.  As communities gain traction, neighboring regions that share marine resources can build larger coalitions to address ocean acidification.  Here are some ideas to get started:

  1. Work with informal educators, such as aquarium outreach programs and local non-profits, to teach the public about ocean acidification. Visit our Education & Outreach page to find the newest tools!
  2. Participate in habitat restoration efforts to restore habitats that help mitigate the effects of coastal acidification
  3. Facilitate conversations with local businesses that might be affected by ocean acidification, building a plan for the future.
  4. Partner with local community efforts to mitigate the driver behind ocean acidification  – excess CO2 – such as community supported agriculture, bike & car shares and other public transportation options.
  5. Contact your regional Coastal Acidification Network (CAN) to learn how OA is affecting your region and more ideas about how you can get involved in your community
       More for Taking Community Action